mobile manipulator
Recently Published Documents


TOTAL DOCUMENTS

1008
(FIVE YEARS 218)

H-INDEX

29
(FIVE YEARS 6)

Robotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Fernando Gonçalves ◽  
Tiago Ribeiro ◽  
António Fernando Ribeiro ◽  
Gil Lopes ◽  
Paulo Flores

Forward kinematics is one of the main research fields in robotics, where the goal is to obtain the position of a robot’s end-effector from its joint parameters. This work presents a method for achieving this using a recursive algorithm that builds a 3D computational model from the configuration of a robotic system. The orientation of the robot’s links is determined from the joint angles using Euler Angles and rotation matrices. Kinematic links are modeled sequentially, the properties of each link are defined by its geometry, the geometry of its predecessor in the kinematic chain, and the configuration of the joint between them. This makes this method ideal for tackling serial kinematic chains. The proposed method is advantageous due to its theoretical increase in computational efficiency, ease of implementation, and simple interpretation of the geometric operations. This method is tested and validated by modeling a human-inspired robotic mobile manipulator (CHARMIE) in Python.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 217
Author(s):  
Ivan Hrabar ◽  
Goran Vasiljević ◽  
Zdenko Kovačić

A heterogeneous robotic system that can perform various tasks in the steep vineyards of the Mediterranean region was developed and tested as part of the HEKTOR—Heterogeneous Autonomous Robotic System in Viticulture and Mariculture—project. This article describes the design of hardware and an easy-to-use method for evaluating the energy consumption of the system, as well as, indirectly, its deployment readiness level. The heterogeneous robotic system itself consisted of a flying robot—a light autonomous aerial robot (LAAR)—and a ground robot—an all-terrain mobile manipulator (ATMM), composed of an all-terrain mobile robot (ATMR) platform and a seven-degree-of-freedom (DoF) torque-controlled robotic arm. A formal approach to describe the topology and parameters of selected vineyards is presented. It is shown how Google Earth data can be used to make an initial estimation of energy consumption for a selected vineyard. On this basis, estimates of energy consumption were made for the tasks of protective spraying and bud rubbing. The experiments were conducted in two different vineyards, one with a moderate slope and the other with a much steeper slope, to evaluate the proposed estimation method.


2022 ◽  
Vol 12 (1) ◽  
pp. 419
Author(s):  
Ferdinando Vitolo ◽  
Andrea Rega ◽  
Castrese Di Marino ◽  
Agnese Pasquariello ◽  
Alessandro Zanella ◽  
...  

Enabling technologies that drive Industry 4.0 and smart factories are pushing in new equipment and system development also to prevent human workers from repetitive and non-ergonomic tasks inside manufacturing plants. One of these tasks is the order-picking which consists in collecting parts from the warehouse and distributing them among the workstations and vice-versa. That task can be completely performed by a Mobile Manipulator that is composed by an industrial manipulator assembled on a Mobile Robot. Although the Mobile Manipulators implementation brings advantages to industrial applications, they are still not widely used due to the lack of dedicated standards on control and safety. Furthermore, there are few integrated solutions and no specific or reference point allowing the safe integration of mobile robots and cobots (already owned by company). This work faces the integration of a generic mobile robot and collaborative robot selected from an identified set of both systems. The paper presents a safe and flexible mechatronic interface developed by using MBSE principles, multi-domain modeling, and adopting preliminary assumptions on the hardware and software synchronization level of both involved systems. The interface enables the re-using of owned robot systems differently from their native tasks. Furthermore, it provides an additional and redundant safety level by enabling power and force limiting both during cobot positioning and control system faulting.


2021 ◽  
Vol 33 (6) ◽  
pp. 1398-1407
Author(s):  
Shunsuke Sato ◽  
◽  
Tianlin Song ◽  
Yasumichi Aiyama

In this study, we propose a tele-operated mobile manipulator for conducting underfloor work, including both inspection and repair. We focus on a caulking operation, and develop a mobile manipulator for finding and repairing cracks in a foundation. When designing the mobile manipulator, we consider a typical narrow underfloor environment, and perform detailed calculations. As a user interface, we furnish an image-pointing system for enabling us to operate the manipulator simply by clicking on a hand camera image. Then, we evaluate its performance based on navigation experiments, trajectory tracking experiments, and overall evaluation experiments.


2021 ◽  
Vol 11 (22) ◽  
pp. 10591
Author(s):  
Lijun Qiao ◽  
Luo Xiao ◽  
Qingsheng Luo ◽  
Minghao Li ◽  
Jianfeng Jiang

In this paper, an optimized kinematic modeling method to accurately describe the actual structure of a mobile manipulator robot with a manipulator similar to the universal robot (UR5) is developed, and an improved self-collision detection technology realized for improving the description accuracy of each component and reducing the time required for approximating the whole robot is introduced. As the primary foundation for trajectory tracking and automatic navigation, the kinematic modeling technology of the mobile manipulator has been the subject of much interest and research for many years. However, the kinematic model established by various methods is different from the actual physical model due to the fact that researchers have mainly focused on the relationship between driving joints and the end positions while ignoring the physical structure. To improve the accuracy of the kinematic model, we present a kinematic modeling method with the addition of key points and coordinate systems to some components that failed to model the physical structure based on the classical method. Moreover, self-collision detection is also a primary problem for successfully completing the specified task of the mobile manipulator. In traditional self-collision detection technology, the description of each approximation is determined by the spatial transformation of each corresponding component in the mobile manipulator robot. Unlike the traditional technology, each approximation in the paper is directly established by the physical structure used in the kinematic modeling method, which significantly reduces the complicated analysis and shortens the required time. The numerical simulations prove that the kinematic model with the addition of key point technology is similar to the actual structure of mobile manipulator robots, and the self-collision detection technology proposed in the article effectively improves the performance of self-collision detection. Additionally, the experimental results prove that the kinematic modeling method and self-collision detection technology outlined in this paper can optimize the inverse kinematics solution.


2021 ◽  
Vol 132 ◽  
pp. 103502
Author(s):  
Chen-Yu Kuo ◽  
Chun-Chi Huang ◽  
Chih-Hsuan Tsai ◽  
Yun-Shuo Shi ◽  
Shana Smith

Sign in / Sign up

Export Citation Format

Share Document