Acoustoelastic Birefringences in Plastically Deformed Solids: Part II—Experiment

1991 ◽  
Vol 58 (1) ◽  
pp. 18-23 ◽  
Author(s):  
Tsung-Tsong Wu ◽  
Masahiko Hirao ◽  
Yih-Hsing Pao

Ultrasonic experiments are preformed on a carbon steel specimen to determine the change of elastic wave speeds by plastic strains and residual stresses in the specimen. Under repeated uniaxial loadings, the acoustoelastic birefringence was found to be a linear function of plastic strains at various states of total unloading. In elastoplastic bendings, the acoustoelastic birefringes are dependent on the natural anisotropy, plastic strains, and residual stresses as predicted by the theory of Part I. The uniaxial residual stress and plastic strain in the beam are determined by acoustoelastic experiments.

Author(s):  
Robert Andrews ◽  
Simon Slater

Codified fitness for service methods such as API 579 or BS 7910 require consideration of residual stresses in fracture assessments, and guidance is given for upper bound residual stress distributions in common weld geometries. However, these distributions are not appropriate for some welding processes currently or historically used in the manufacture of linepipe, such as high frequency induction welding or flash butt welding. In addition, some linepipe manufacturing routes generate large plastic strains which result in high residual forming stresses, or mechanically relax residual stresses generated in earlier stages of production. This paper first reviews the code recommendations for the effects of plastic strains and stresses from high level pressure testing on residuals stresses. The paper then briefly describes the major methods of producing carbon steel linepipe and provides recommended residual stress levels for the seam weld and parent material of linepipe using the code recommendations. These are based on assumed uniform residual stresses combined with mechanical stress relaxation due to manufacturing steps such as cold expansion and hydrostatic testing. The recommendations are compared with measured residual stress levels from the open literature. Proposals are given for reduced residual stress levels when assessing axial cracks in carbon steel linepipe.


2011 ◽  
Vol 110-116 ◽  
pp. 2686-2692
Author(s):  
Gurinder Singh Brar ◽  
Gurdeep Singh

Welding is a reliable and efficient joining process in which the coalescence of metals is achieved by fusion. Welding is widely employed in diverse structures such as ships, aircraft, marine structures, bridges, ground vehicles, pipelines and pressure vessels. When two dissimilar plates are joined by welding process, a very complex thermal cycle is applied to the weldment, which further causes inhomogeneous plastic deformation and residual stress in and around fusion zone and heat affected zone (HAZ). Presence of residual stresses may be beneficial or harmful for the structural components depending on the nature and magnitude of residual stresses. In this study, a finite element analysis has been carried out to analyze the thermo-mechanical behaviour and effect of residual stress state in butt-welded in low carbon steel plates. A coupled thermal mechanical three dimension finite element model was developed. Finite element method based software SolidWorks Simulation, was then used to evaluate transient temperature and residual stress during butt welding of two plates. Plate thickness of 8 mm were used which are normally joined by multi-pass operation by Manual Metal Arc Welding (MMAW) process. During each pass, attained peak temperature and variation of residual stresses in plates has also been studied. The results obtained by finite element method agree well with those from X-ray diffraction method as published by Murugan et al. for the prediction of residual stresses.


2004 ◽  
Vol 120 ◽  
pp. 489-497
Author(s):  
R. Mukai ◽  
D.-Y. Ju

Predictions of deformation, residual stresses and hardness after heat treatment of gears by numerical simulation are very useful to determine optimum condition to decrease the distortion of machinery parts. In this paper, simulation on carburizing quenching of a helical gear made of carbon steel SCr420 was carried out using three-dimensional coupled analysis based on thermo-mechanical theory considering phase transformation. The expansion and latent heat due to phase transformation at various carburizing conditions were measured by TMA and DSC to determine the thermal physical properties of SCr420 carbon steel. The influence of the transformation plasticity strain on deformation, residual stress and hardness of a gear was clarified in the simulation. The accuracy of simulation also is verified by the comparison between the experimental data and the simulated result of the distortion and residual stress. From the predicted results, improvement of the hardness and strength on surface of the gear due to the carburizing-quenching process can be verified.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Wenchun Jiang ◽  
Yun Luo ◽  
J. H. Li ◽  
Wanchuck Woo

Dissimilar welding between carbon steel and stainless steel is widely used in power plant. A lot of stress corrosion cracking (SCC) have occurred in the weld joint, which are affected greatly by residual stresses. This paper presents a study of residual stress in a dissimilar weld between 0Cr18Ni9 steel and 20 low carbon steel with Inconel 182 weld metal, by using neutron diffraction, X-ray diffraction measurement and finite-element method (FEM). The residual stresses show asymmetric distribution due to the dissimilar materials. The maximum longitudinal (1.92ReL304) and transverse stresses (1.07ReL304) are presented in the weld metal and heat effected zone of 20 carbon steel, respectively. Through the thickness of weld metal, the average longitudinal stress is around 370 MPa. The weld root has a stress concentration, and the stresses near the weld root in the 20 steel are larger than those in 0Cr18Ni9 steel, making the weld root become the most risk zone for SCC. With the increase of heat input, the residual stress and plastic deformation around the weld root increase. Hence, low heat input is recommended for the welding between 0Cr18Ni9 steel and 20 carbon steel.


Author(s):  
Jenan Mohammed Naje ◽  
Nidaa Hameed Dawood ◽  
Sara Saad Ghazi

This paper explores the effect of ultrasonic peening using various passes on an impact strength of AISI 1020 low carbon steel. Many ASTM E23 impact specimens were prepared from the chosen metal and exposed to multi-pass ultrasonic peening (1,2,3 pass). Microstructure, hardness, residual stresses, and impact tests on ultrasonic peened and not peened samples were performed. Ultrasonic peening contributed to increasing the impact strength, due to the increase in comparative residual stress and hardness. Three passes show improvement in strength by (29.7%), comparative with the base metal.


1992 ◽  
Vol 114 (4) ◽  
pp. 417-421 ◽  
Author(s):  
H. Kobayashi ◽  
Y. Arai ◽  
Y. Ohsawa ◽  
H. Nakamura ◽  
A. Todoroki

Nondestructive measurements of residual stresses were successfully attempted by the acoustoelastic technique on butt-welded joints of a carbon steel for nuclear piping. Usefulness of the technique considering the effect of the material anisotropy is emphasized. Based on the measured residual stresses, predictions of the fatigue crack growth were done using the superposition technique. It is shown that predictions agree well with experiments. The effect of the accuracy in residual stress measurements on the predictions is also included.


2014 ◽  
Vol 783-786 ◽  
pp. 2857-2862
Author(s):  
Dong Xiao Qiao ◽  
Xing Hua Yu ◽  
Wei Zhang ◽  
Paul Crooker Yu ◽  
Stan David ◽  
...  

Stainless steel has been widely used in challenging environments typical to nuclear power plant structures, due its excellent corrosion resistance. Nickel filler metals containing high chromium concentration, including Alloy 82/182, are used for joining stainless steel to carbon steel components to achieve similar high resistance to stress corrosion cracking. However, the joint usually experience weld metal stress corrosion cracking (SCC), which affects the safety and structural integrity of light water nuclear reactor systems. A primary driving force for SCC is the high tensile residual stress in these welds. Due to large dimension of pressure vessel and limitations in the field, non-destructive residual stress measurement is difficult. As a result, finite element modeling has been the de facto method to evaluate the weld residual stresses. Recent studies on this subject from researchers worldwide report different residual stress value in the weldments [5]. The discrepancy is due to the fact that most of investigations ignore or underestimate the thermal recovery in the heat-affect zone or reheated region in the weld. In the current study, the effect of heat treatment on thermal recovery and microhardness is investigated for materials used in dissimilar metal joint. It is found that high equivalent plastic strains are predominately accumulated in the buttering layer, the root pass, and the heat affected zone, which experience multiple welding thermal cycles. The final cap passes, experiencing only one or two welding thermal cycles, exhibit less plastic strain accumulation. Moreover, the experimental residual plastic strains are compared with those predicted using an existing weld thermo-mechanical model with two different strain hardening rules. The importance of considering the dynamic strain hardening recovery due to high temperature exposure in welding is discussed for the accurate simulation of weld residual stresses and plastic strains. Finally, the experimental result reveals that the typical post-buttering heat treatment for residual stress relief may not be adequate to completely eliminate the residual plastic strains in the buttering layer.


2005 ◽  
Vol 490-491 ◽  
pp. 153-158
Author(s):  
Jun Peng ◽  
Vincent Ji ◽  
Wilfrid Seiler

Residual stresses levels and their distributions in thin films have an important effect on their mechanical properties. The non-destructive analysis by pseudo-grazing incidence X-ray diffraction (GIXRD) allows us to define residual stresses gradients as a function of thin film depth. In case of pseudo-GXRD, we must take into account the effects due to surface roughness on residual stress analysis. We have investigated firstly a set of carbon steel specimens with different surface roughness (RZ varies from 4.2µm to 9.5µm) obtained by grinding. All specimens were tempered to eliminate the residual stresses due to machining. With K radiation of Chromium, Bragg peak positions were determined with various incidence angles  (varies from 1° to 78°) for each specimen. Secondly, a carbon steel specimen containing 4 zones with different surface roughness was loaded elastically in tension, pseudo-GIXRD has used for stress analysis on the loaded specimen with various incidence angles. The peak shifts due to the surface roughness were studied as function of different roughness and different incidence angles. The stress relaxation due to surface roughness was then studied.


Author(s):  
Gurinder Singh Brar ◽  
Gurdeep Singh

In this paper a three-dimensional welding simulation was carried out by commercially available finite element software to predict temperature and the residual stress distributions in V-butt welded joint of two dissimilar pipes. Low carbon steel and stainless steel pipe welding is widely used in a variety of engineering applications such as oil and gas industries, nuclear and thermal power plants and chemical plants. Inelastic deformations during heat treatment are the major cause of residual stress. Heat during welding causes localized expansion as some areas cool and contract more than others. The stress variation in the weldment can be very complex and can vary between compressive and tensile stresses. The mismatching (in the weld in general) occurs due to joint geometry and plate thickness. Welding procedures and degree of restraints also influences the residual stress distributions. To understand the behavior of residual stress, two dissimilar pipes one of stainless steel and another of low carbon steel with outer diameter of 356 mm and internal diameter 240 mm were butt welded. The welding was completed in three passes. The first pass was performed by Manual TIG Welding using ER 309L as a filler metal. The remaining weld passes were welded by Manual Metal Arc Welding (MMAW) and ER 309L-16 was used as a filler metal. During each pass, attained peak temperature and variation of residual stresses and magnitude of axial stress and hoop stress in pipes has been calculated. The results obtained by finite element method agree well with those from Ultrasonic technique (UT) and Hole Drilling Strain-Gauge (HDSG) as published by Akhshik and Moharrami (2009) for the improvement in accuracy of the measurements of residual stresses.


2016 ◽  
Vol 7 (1) ◽  
pp. 70-94 ◽  
Author(s):  
Miguel Abambres ◽  
Wai-Meng Quach

Purpose – Although the actual residual stress distribution in any structural steel member can be only obtained by experimental measurements, it is known to be a difficult, tedious and inefficient piece of work with limited accuracy. Thus, besides aiming at clarifying structural designers and researchers about the possible ways of modelling residual stresses when performing finite element analysis (FEA), the purpose of this paper is to provide an effective literature review of the longitudinal membrane residual stress analytical expressions for carbon steel non-heavy sections, covering a vast range of structural shapes (plates, I, H, L, T, cruciform, SHS, RHS and LSB) and fabrication processes (hot-rolling, welding and cold-forming). Design/methodology/approach – This is a literature review. Findings – Those residual stresses are those often required as input of numerical analyses, since the other types are approximately accounted for through the s-e curves of coupons cut from member walls. Practical implications – One of the most challenging aspects in FEA aimed to simulate the real behaviour of steel members, is the modelling of residual stresses. Originality/value – Besides aiming at clarifying structural designers and researchers about the possible ways of modelling residual stresses when performing FEA, this paper also provides an effective literature review of the longitudinal membrane residual stress analytical expressions for carbon steel non-heavy sections, covering a vast range of structural shapes (plates, I, H, L, T, cruciform, SHS, RHS and LSB) and fabrication processes (hot-rolling, welding and cold-forming).


Sign in / Sign up

Export Citation Format

Share Document