Variations in Fracture Toughness for Alloy 718 Given a Modified Heat Treatment

1990 ◽  
Vol 112 (1) ◽  
pp. 116-123 ◽  
Author(s):  
W. J. Mills ◽  
L. D. Blackburn

Heat-to-heat and product-form variations in the JIC fracture toughness for Alloy 718 were characterized at 24, 427, and 538°C using the multiple-specimen JR-curve method. Six different material heats along with three product forms from one of the heats were tested in the modified heat treated condition. This heat treatment was developed at Idaho National Engineering Laboratory to improve the impact toughness for Alloy 718 weldments, but it has also been found to enhance the fracture resistance for the base metal. Statistical analysis of test results revealed four distinguishable JIC levels with mean toughness levels ranging from 87 to 190 kJ/m2 at 24°C. At 538°C, JIC values were 15 to 20 percent lower than room temperature toughness levels. Minimum expected values of JIC (ranging from 72 kJ/m2 at 24°C to 48 kJ/m2 at 538°C) and dJR/da (27 MPa at 24 to 538°C) were established based on tolerance intervals bracketing 90 percent of the lowest JIC and dJR/da populations at a 95 percent confidence level. Metallographic and fractographic examinations were performed to relate key microstructural features and operative fracture mechanisms to macroscopic properties.

1988 ◽  
Vol 110 (3) ◽  
pp. 286-293 ◽  
Author(s):  
W. J. Mills ◽  
L. D. Blackburn

Heat-to-heat and product-form variations in the JIc fracture toughness of Alloy 718 were examined at 24°C, 427°C, and 538°C using the multiple-specimen JR-curve method. Five different material heats along with three product forms from one of the heats were tested in the conventional heat-treatment condition. Statistical analysis revealed only two significantly different JIc levels of 48 kJ/m2 and 74 kJ/m2 for these materials. These two mean JIc levels were independent of temperature. A minimum-expected JIc level based on a tolerance interval bracketing 90 percent of the lower JIc population at a 95 percent confidence level was evaluated as 33 kJ/m2. Coarse δ precipitates controlled the fracture properties by initiating secondary dimples that pre-empted continued growth of primary dimples nucleated by broken carbide inclusions.


2015 ◽  
Vol 226 ◽  
pp. 103-106
Author(s):  
Janusz Adamiec ◽  
Izabela Pikos ◽  
Michał Stopyra

T23 is modern bainitic steel designed for use in supercritical boilers. According to producer’s data weldability of this steel is good enough to avoid post-weld heat treatment. However, some of the T23 weld joints in as-welded condition have not met the minimal ductility requirement. The impact test revealed significant differences between the joints in as-welded and heat treated condition. Metallographic and fractographic examinations have been conducted in order to explain those differences. The specimens with low impact strength were characterized by brittle fracture and non-tempered martensite presence in weld metal. It was concluded that avoiding formation of disadvantageous structure in weld metal requires conducting of post weld heat treatment or applying multi-pass welding technique with annealing run.


Alloy Digest ◽  
1974 ◽  
Vol 23 (12) ◽  

Abstract FEDERATED F401.5Ni is a heat-treatable aluminum casting alloy with high strength and good wear resistance in the fully heat-treated condition. It is recommended for castings requiring good strength at elevated temperatures. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-212. Producer or source: Federated Metals Corporation, ASARCO Inc..


Alloy Digest ◽  
1991 ◽  
Vol 40 (4) ◽  

Abstract UNS G62100 is a tough, shock resisting, case-hardening chromium-vanadium steel. It has high fatigue resistance in the heat treated condition. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low and high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: SA-458. Producer or source: Alloy steel mills and foundries.


Alloy Digest ◽  
1957 ◽  
Vol 6 (3) ◽  

Abstract AISI 9840 is a nickel-chromium-molybdenum steel very similar to AISI 4340 with lower nickel and slightly higher manganese. In the heat treated condition it has good combination of strength, fatigue resistance, toughness and wear resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, machining, and joining. Filing Code: SA-55. Producer or source: Alloy steel mills and foundries.


Alloy Digest ◽  
1971 ◽  
Vol 20 (3) ◽  

Abstract MAXEL 3 1/2 is a free-machining alloy steel that provides an outstanding combination of heat-treated properties and superior machinability. It can be supplied in the heat-treated condition at 262-311 Brinell hardness. See also MAX-EL 3 1/2, Alloy Digest SA-45, July 1956. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as heat treating, machining, joining, and surface treatment. Filing Code: SA-262. Producer or source: Crucible Specialty Metals Division, Colt Industries.


Author(s):  
Marios Kazasidis ◽  
Elisa Verna ◽  
Shuo Yin ◽  
Rocco Lupoi

AbstractThis study elucidates the performance of cold-sprayed tungsten carbide-nickel coating against solid particle impingement erosion using alumina (corundum) particles. After the coating fabrication, part of the specimens followed two different annealing heat treatment cycles with peak temperatures of 600 °C and 800 °C. The coatings were examined in terms of microstructure in the as-sprayed (AS) and the two heat-treated conditions (HT1, HT2). Subsequently, the erosion tests were carried out using design of experiments with two control factors and two replicate measurements in each case. The effect of the heat treatment on the mass loss of the coatings was investigated at the three levels (AS, HT1, HT2), as well as the impact angle of the erodents (30°, 60°, 90°). Finally, the response surface methodology (RSM) was applied to analyze and optimize the results, building the mathematical models that relate the significant variables and their interactions to the output response (mass loss) for each coating condition. The obtained results demonstrated that erosion minimization was achieved when the coating was heat treated at 600 °C and the angle was 90°.


2011 ◽  
Vol 189-193 ◽  
pp. 3891-3894
Author(s):  
Ya Min Li ◽  
Hong Jun Liu ◽  
Yuan Hao

The casting Fe3Al intermetallics were solidified in sodium silicate sand mould and permanent mould respectively to get different cooling rates. After heat treatment (1000°С/15 h homogenizing annealing + furnace cooling followed by 600°С/1 h tempering + oil quenching), the microstructure and properties of Fe3Al intermetallics were investigated. The results show that the heat-treated Fe3Al intermetallics at higher cooling rate has finer grained microstructure than lower cooling rate, and the lattice distortion increases due to the higher solid solubility of the elements Cr and B at higher cooling rate. The tensile strength and hardness of the Fe3Al intermetallics at higher cooling rate are slightly higher also. However, the impact power of intermetallics at higher cooling rate is 67.5% higher than that at lower cooling rate, and the impact fracture mode is also transformed from intercrystalline fracture at lower cooling rate to intercrystallin+transcrystalline mixed fracture at higher cooling rate.


2007 ◽  
Vol 344 ◽  
pp. 383-390 ◽  
Author(s):  
Marion Merklein ◽  
Uwe Vogt

Tailored Heat Treated Blanks (THTB) are blanks that exhibit locally different strength specifically optimized for the succeeding forming process. The strength distribution is set by a local, short-term heat treatment modifying the mechanical properties of the material. Hence, THTB allow enhancing forming limits significantly leading to shorter and more robust manufacture process chains. In order to qualify the use of THTB under quasi series conditions, the interdependencies of the blank’s local heat treatment and the entire process chain of the car body manufacture have to be analyzed. In this respect, the impact of a short-term heat treatment on the mechanical properties of AA6181PX, a commonly used aluminum alloy in today’s car bodies, was studied. Also the influence of a short-term heat treatment on the coil lubricant, usually already applied by the material supplier, was given a closer look. Based on these experiments process restrictions for the application of THTB in an industrial automotive environment were derived and a process window for the THTB design was set up. In conclusion, strategies were defined how to enhance the found process boundaries leading to a more robust process window.


2021 ◽  
Vol 1016 ◽  
pp. 957-963
Author(s):  
Marie Moses ◽  
Madlen Ullmann ◽  
Rudolf Kawalla ◽  
Ulrich Prahl

Since 2018, the institute of metal forming has been studying the novel twin-roll casting (TRC) of magnesium wire at the pilot research plant set up specifically for this purpose. Light microscopic and scanning electronic investigations were carried out within this work and show the unique microstructure of twin-roll cast AZ31 magnesium alloy with grain sizes of about 10 μm ± 4 μm in centre and 39 μm ± 26 μm near the surface of the sample. By means of a short heat treatment (460 °C/15 min), segregations can be dissolved and grain size changes in centre to 19 μm ± 12 μm (increase) and near the surface to 12 μm ± 7 μm (decrease). Further, the mechanical properties of the twin-roll cast and heat-treated wire were analysed by tensile testing at room temperature. By heat treatment, the total elongation could be increased by a third whereas the strength decreases slightly. In heat-treated state, no preferred orientation is evident. In addition to the twin-roll cast and the heat-treated condition, the rolled state was analysed. For this purpose, the twin-roll cast wire was hot rolled using an oval-square calibration. After hot rolling, a dynamic recrystallization and grain refinement of the twin-roll cast wire could be achieved. It can be seen, that an increase in strength as well as in total elongation occur after wire rolling. Beside this, a rolling texture is evident.


Sign in / Sign up

Export Citation Format

Share Document