heat treatment condition
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 30)

H-INDEX

10
(FIVE YEARS 3)

2022 ◽  
Vol 60 (1) ◽  
pp. 26-34
Author(s):  
Chan Yang Kim ◽  
Do hyung Kim ◽  
Won sub Chung

This study was conducted to evaluate the corrosion resistance and optimize the heat-treatment process of AISI 439 ferrite stainless steel silicon and tin alloys with reduced chromium. The microstructure of the specimens and deposition under each condition were analyzed. The production of oxide films was compared based on the thickness of the film and the change in the contents of each element. In addition, electrochemical analyses of each heat-treatment condition was used to quantitatively compare corrosion resistance and passive film stability based on the relative chromium, silicon, and tin contents. It was found that the addition of silicon and tin compensated for the decrease in corrosion resistance induced by the chromium reduction. The addition of the two elements inhibited iron (Fe) oxide production in the surface oxide film, thereby improving the corrosion resistance of the material and improving the stability of the passive film. Moreover, the SiO2 and SnO2 layers inhibited the production of Fe oxide and contributed to the stability of the film along with Cr2O3, the main component of the passive film. However, when the heat treatment temperature increased above a specific temperature, the oxide inhibitory effect of the two elements was relatively offset. Nevertheless, further research to optimize the content of the three elements will help develop materials with superior mechanical properties and corrosion resistance.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6667
Author(s):  
Huda Mohammed Sabbar ◽  
Zulkiflle Leman ◽  
Shazarel Shamsudin ◽  
Suraya Mohd Tahir ◽  
Che Nor Aiza Jaafar ◽  
...  

Direct solid-states, such as hot extrusion and equal channel angular pressing (ECAP), are alternative and efficient solid-state processes for use in recycling aluminium scrap. These processes utilise less energy and are eco-friendly. Ceramic particles such as ZrO2 are suggested as alternatives in the production of metal composites. This study investigated and optimised the effects of various parameters of reinforced ZrO2 nanoparticles on the mechanical and physical properties via response surface methodology (RSM). These parameters were the volume fraction (VF), preheating temperature (T), and preheating time (t). The effects of these parameters were examined before and after the heat treatment condition and ECAP. Each parameter was evaluated at varying magnitudes, i.e., 450, 500, and 550 °C for T, 1, 2, and 3 h for t, and 1, 3, and 5% for VF. The effect that process variables had on responses was elucidated using the factorial design with centre point analysis. T and VF were crucial for attaining the optimum ultimate tensile strength (UTS) and microhardness. Reducing VF increased the mechanical properties to 1 vol% of oxide. The maximum hardness of 95 HV was attained at 550 °C, 1.6 h, and 1 vol% ZrO2 with a density of 2.85 g/cm3 and tensile strength of 487 MPa. UTS, density, and microhardness were enhanced by 14%, 1%, and 9.5%, respectively. Additionally, the hot extrusion parameters and ECAP followed by heat treatment strengthened the microhardness by 64% and density by 3%. Compression pressure and extrusion stress produced in these stages were sufficient to eliminate voids that increased the mechanical properties.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6014
Author(s):  
Zong-Yao Yan ◽  
Jian-Yong Liu ◽  
Jia-Rong Niu

TPU-coated polyester fabric was used as the substrate of a flexible temperature sensor and Ag nanoparticles were deposited on its surface as the temperature sensing layer by the magnetron sputtering method. The effects of sputtering powers and heat treatment on properties of the sensing layers, such as the temperature coefficient of resistance (TCR), linearity, hysteresis, drift, reliability, and bending resistance, were mainly studied. The results showed that the TCR (0.00234 °C−1) was the highest when sputtering power was 90 W and sputtering pressure was 0.8 Pa. The crystallinity of Ag particles would improve, as the TCR was improved to 0.00262 °C−1 under heat treatment condition at 160°. The Ag layer obtained excellent linearity, lower hysteresis and drift value, as well as good reliability and bending resistance when the sputtering power was 90 W. The flexible temperature sensor based on the coated polyester fabric improved the softness and comfortableness of sensor, which can be further applied in intelligent wearable products.


Author(s):  
Jayasheel Kumar K A ◽  
◽  
C M Ramesha ◽  

The paper deal with the hardness property assessment of various Al-Si alloys under heat treated conditions. The tested specimens have the compositions of Si with percentages such as 12 18 and 24. The fabrication of the selected composition is carried out by melting the material to the melting temperature of around 800°C. The material is subjected to solutionised heat treatment for 3 hours at 500°C, 520°C and 535°C and quenched in water. Further aging is carried out at 155°C for 2 hours, 5 hours and 8 hours respectively for 500°C, 520°C and 535°C of solution heat treatment condition. The hardness property is evaluated using Vickers Hardness tester as per the standards of ASTM- E92. Thorough comparison of Vickers hardness number is performed among the as- cast and various heat treated environment. Desirable properties of alloy are observed at 520°C solutionised heat treatment & 5 hours of precipitation hardening at 155°C for 18% of Silicon composition. The hardness value decreases due to the increase in percentage of silicon and the values are observed.


Author(s):  
Şehmus Baday ◽  
Onur Ersöz

This study aims to focus on the machinability of the AISI 1050 workpieces with cutting inserts, treated under deep cryogenic heat (−146 °C), and with untreated ones, and to investigate the optimization of cutting parameters and heat treatment conditions for surface roughness and cutting force by using Taguchi mixed design and Response Surface Methodology (RSM). The machining experiment was performed on a CNC lathe with machining parameters such as three feed rates, three cutting speeds and a constant depth of cut under dry condition and with heat treatment condition. As is known, Taguchi design L18 (32 21) consists of three factors; cutting parameters with each one of three levels and heat treatment condition with two levels. The results of machining tests were evaluated considering surface roughness, vibrations and cutting force. Furthermore, chip morphology and wear led by cryo-treated and untreated inserts were detected with the aid of a scanning electron microscope. The results demonstrated that cryo-treated (CTI) insert had lower tool wear, vibration, and cutting force than untreated insert (UI) in all conditions. In aspect of chip morphology, untreated inserts had bigger and larger serrations than the treated inserts. In addition, according to Taguchi S/N ratio, optimal cutting parameters and heat treatment conditions were obtained from CHT1, V3, and f1 for the Fc and from CHT1, V1, and f1 for the Ra, respectively. Also, the most significant control factors on surface roughness and cutting force were feed rate depending on ANOVA results and RSM. Validation test results demonstrated that RSM and Taguchi mixed design calculated the cutting force (R2RSM (CTI and UI) = 99.99% and R2Tag. = 99.95%) and surface roughness (R2RSM (CTI) = 99.76%, R2RSM (UI) = 99.59% and R2Tag. = 99.12%). Therefore, RSM and Taguchi mixed design predicts highly well match experimental data with prediction data.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3686
Author(s):  
Petra Maier ◽  
Benjamin Clausius ◽  
Asta Richter ◽  
Benjamin Bittner ◽  
Norbert Hort ◽  
...  

The investigation of the crack propagation in as-extruded and heat-treated Mg-Dy-Nd-Zn-Zr alloy with a focus on the interaction of long-period stacking-ordered (LPSO) structures is the aim of this study. Solution heat treatment on a hot extruded Mg-Dy-Nd-Zn-Zr (RESOLOY®) was done to change the initial fine-grained microstructure, consisting of grain boundary blocky LPSO and lamellar LPSO structures within the matrix, into coarser grains of less lamellar and blocky LPSO phases. C-ring compression tests in Ringer solution were used to cause a fracture. Crack initiation and propagation is influenced by twin boundaries and LPSO lamellae. The blocky LPSO phases also clearly hinder crack growth, by increasing the energy to pass either through the phase or along its interface. The microstructural features were characterized by micro- and nanohardness as well as the amount and location of LPSO phases in dependence on the heat treatment condition. By applying nanoindentation, blocky LPSO phases show a higher hardness than the grains with or without lamellar LPSO phases and their hardness decreases with heat treatment time. On the other hand, the matrix increases in hardness by solid solution strengthening. The microstructure consisting of a good balance of grain size, matrix and blocky LPSO phases and twins shows the highest fracture energy.


2021 ◽  
Vol 41 (2) ◽  
pp. 161
Author(s):  
Robi Andoyo ◽  
Anindya Rahmana Fitri ◽  
Ratih Siswanina Putri ◽  
Efri Mardawati ◽  
Bambang Nurhadi ◽  
...  

Wastewater produced from cheese industry is rich in biological component such as whey protein, fat and lactose. Whey protein is the residual liquid of cheese making process with a high protein efficiency ratio. The wastewater source used in this study was whey liquid from cheese processing industry located at West Java, Indonesia. Conversion of soluble whey protein into whey protein microparticle is required to produce food with nutritional value that can be adjusted to the needs of the specific target with high digestibility and palatability. Whey protein was collected by separation technique through heat treatment at specific condition. This was done by changing the heat treatment condition and pH of the samples. Changing the pH of the samples before heat treatment affect the ionic strength of the whey protein hence, altering the properties of the concentrate. This study aims to produce whey protein concentrate heated at various pH level and to observe physicochemical and functional properties of the concentrates. The method used in this research was a descriptive method conducted on three treatments and two replications namely whey protein concentrate production in a pH condition 6.4; 6.65; and 7.0. The parameters observed were physicochemical and functional properties. Furthermore, the result showed that there were decrease in protein content, along with the increasing pH before heat treatment. Microstructure image (SEM) showed a finer particles with the increasing pH. Meanwhile, solubility of the rehydrated samples tends to increase along with the increasing pH. The measurement of functional properties of the samples showed that denatured whey protein produced at different pH before heat treatment have different water holding capacity and a tendency to form bonds between protein particles thereby increasing the viscosity value. These physicochemical and functional properties were suitable for denatured whey protein to be used as a texture controller in whey protein based-food production.


2021 ◽  
Vol 5 (2) ◽  
pp. 27
Author(s):  
Richard Börner ◽  
Pierre Landgraf ◽  
Simon Kimme ◽  
Christian Titsch ◽  
Thomas Lampke ◽  
...  

The importance of functional surfaces is continuously growing in the context of increasing demands on the sustainability of performance, resource efficiency and manufacturing costs of technical systems. For example, microstructured substrate surfaces can contribute to enhance the adhesion of layers, which in turn ensure the wear protection of a highly loaded component. Many microstructuring processes require a system change, entailing high costs. However, the ultrasonic vibration superimposed machining (UVSM) can be implemented as a finishing process. Due to its defined cutting-edge geometry and kinematics, UVSM represents a suitable method for a reliable generation of predefined surface microstructures. In order to optimize the process regarding the tool wear behavior and thus the geometrical characteristics of the surface microstructure, experimental investigations are carried out to find the most suitable combination of heat treatment condition of the martensitic stainless-steel X46Cr13 and various cutting materials. A vibration system for workpiece-side excitation is used for the experimental cutting tests. The most promising results were obtained within the combination of cemented carbide as a cutting tool and soft annealing as a heat treatment condition. They serve as a base for extensive investigations on the effects of substrate microstructuring to the adhesion of chemical vapor deposition (CVD) diamond layers to steel.


Author(s):  
W. Tillmann ◽  
L. Wojarski ◽  
T. Henning

AbstractEven though the buildup rate of laser powder bed fusion processes (LPBF) has steadily increased in recent years by using more and more powerful laser systems, the production of large-volume parts is still extremely cost-intensive. Joining of an additively manufactured complex part to a high-volume part made of conventional material is a promising technology to enhance economics. Today, constructors have to select the most economical joining process with respect to the individual field of application. The aim of this research was to investigate the hybrid joint properties of LBPF and conventionally casted 18MAR300 nickel maraging steel depending on the manufacturing process and the heat treatment condition. Therefore, the microstructure and the strength of the hybrid joints manufactured by LPBF or vacuum brazing were examined and compared to solid material and joints of similar material. It was found that the vacuum-brazed hybrid joints using a 50.8-μm-thick AuNi18 foil provide a high tensile strength of 904 MPa which is sufficient for a broad field of application. Furthermore, the additively manufactured hybrid samples offered with 1998 MPa a tensile strength more than twice as high but showed a considerable impact of buildup failures to the strength in general.


2021 ◽  
Vol 349 ◽  
pp. 02019
Author(s):  
Sérgio S.M. Tavares ◽  
Bruna Abib ◽  
Paulo Kenedi ◽  
Odivaldo C. Alves ◽  
Brígida B. Almeida

The fatigue limits of a 13Cr super-martensitic stainless steel from a hot rolled seamless tube were determined for three heat treatment conditions, including the as received quenched and tempered (QT) condition, quenched (Q), and quenched and double tempered (Q-DT). These heat treatments were applied to produce different microstructures and different tensile mechanical properties. The microstructures were characterized by microscopy and magnetic methods. The fatigue strength was accessed through the utilization of the thermographic technique. The results show that fatigue limits measured were between 38% and 44% of the ultimate strength. The as quenched condition gave the higher fatigue limit (444 MPa). However, the material has the lower dutility at this condition. The results aid to decide the best heat treatment condition and give support to design in applications where dynamic loadings are expected


Sign in / Sign up

Export Citation Format

Share Document