Influence of Unsteady Effects on the Measurements in a Transonic Axial Compressor

1992 ◽  
Vol 114 (3) ◽  
pp. 510-516 ◽  
Author(s):  
J. Paulon ◽  
Zhifang Zhang ◽  
Pingfang Jia ◽  
Jingfei Meng

Interaction phenomena between rotor and stator are unavoidable in advanced compressors and their effects increase with the performance of the turbomachines. Until now, it was not possible to quantify the interaction effects, but with the development of three-dimensional unsteady computation codes in a complete stage, it is possible to know, in detail, the flow field through the machine and to make evident and to explain the difficulties encountered in measuring the flow parameters. A study has been conducted in this way at ONERA, on an axial transonic compressor stage. The computations have been made with a simulation of the losses; in this manner, the overall computed and measured performances of the compressor are the same. A detailed analysis of the unsteady computation results makes evident, between rotor and stator, large variations of some parameters of the flow as a function of time, but also as a function of the axial and tangential relative position of steady probes and stator blades. Unsteady measurements made on another transonic machine confirm the indications given by these computations.

1991 ◽  
Author(s):  
Jacques Paulon ◽  
Zhifang Zhang ◽  
Pingfang Jia ◽  
Jingfei Meng

Interaction phenomena between rotor and stator are unavoidable in advanced compressors and their effects increase with the performances of the turbomachines. Until now, it was not possible to quantify the interaction effects, but with the development of 3-D unsteady computation codes in a complete stage, it is possible to know, in detail, the flow field through the machine and to make evident and to explain the difficulties encountered in measuring the flow parameters. A study has been conducted in this way at ONERA, on an axial transonic compressor stage. The computations have been made with a simulation of the losses; in this manner, the overall computed and measured performances of the compressor are the same. A detailed analysis of the unsteady computation results makes evident, between rotor and stator, large variations of some parameters of the flow as a function of time but also as a function of the axial and tangential relative position of steady probes and stator blades. Unsteady measurements made on another transonic machine confirm the indications given by these computations.


Author(s):  
Adel Ghenaiet ◽  
Nouredine Djeghri

This paper presents a multi-block solver dealing with an inviscid three dimensional compressible flow through a transonic compressor blading. For efficient computations of the 3D time dependant Euler equations, this solver that we have developed has been cast within a stationary ALE ‘Arbitrary Lagrangian Eulerian’. The main contribution of this paper is by consolidating this ALE formulation, to alleviate the shortcomings linked to rotation effects and the mixed relative subsonic–supersonic inlet flow conditions, which are now simply implemented through an absolute subsonic flow velocity. The finite volume based solver is using the central differencing scheme known as JST (Jameson-Schmidt-Turkel). The explicit multistage Runge-Kutta algorithm is used as a pseudo time marching to the steady-state, coupled with two convergence accelerating techniques; the variable local time-stepping and the implicit residual smoothing procedure. The adaptive implicit residual smoothing has extended the stability range of this explicit scheme, and proved to be successful in accelerating the rate of convergence. This code is currently being extended to include viscous effects, where fluxes are discretized based on Green’s theorem. To support this solver, an H type grid generator based on algebraic and elliptic methods has been developed. The segmentation of the complete domain into smaller blocks has provided full topological and geometrical flexibilities. The code was used to compute the flow field of a transonic axial compressor NASA rotor 37, and comparisons between the calculations and some available experimental data under the design speed and part speed, show qualitatively good agreement.


Author(s):  
Cristian Ferrari ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
Pier Ruggero Spina

In recent years, a constantly growing interest in CFD accuracy assessment has been noticed in the open literature. In particular, this interest has grown considerably in the field of technical and industrial applications, since CFD is nowadays routinely used by many engineers, especially in research and development. In this paper, a contribution to this topic is presented. The most common issues about CFD uncertainty are reviewed and commented. Then, some findings originating from the application of three-dimensional numerical calculations to a model of the NASA Stage 37 axial compressor are reported. Particular attention is devoted to multistage turbomachinery modelling uncertainty in terms of rotor/stator interface models and rotor and stator gridding issues.


2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
M. Hembera ◽  
H.-P. Kau ◽  
E. Johann

This article presents the study of casing treatments on an axial compressor stage for improving stability and enhancing stall margin. So far, many simulations of casing treatments on single rotor or rotor-stator configurations were performed. But as the application of casing treatments in engines will be in a multistage compressor, in this study, the axial slots are applied to a typical transonic first stage of a high-pressure 4.5-stage compressor including an upstream IGV, rotor, and stator. The unsteady simulations are performed with a three-dimensional time accurate Favre-averaged Navier-stokes flow solver. In order to resolve all important flow mechanisms appearing through the use of casing treatments, a computational multiblock grid consisting of approximately 2.4 million nodes was used for the simulations. The configurations include axial slots in 4 different variations with an axial extension ranging into the blade passage of the IGV. Their shape is semicircular with no inclination in circumferential direction. The simulations proved the effectiveness of casing treatments with an upstream stator. However, the results also showed that the slots have to be carefully positioned relative to the stator location.


Author(s):  
André Inzenhofer ◽  
Cyril Guinet ◽  
Andreas Hupfer ◽  
Bernd Becker ◽  
Patrick Grothe ◽  
...  

Tip blowing and axial slot casing treatments have shown their ability to enhance the stability of a transonic axial compressor with different effects on efficiency. For an effective application of these casing treatments, a good knowledge of the influence of the casing treatment on the rotor flow field is important. There is still a need for more detailed investigations, in order to understand the interaction between the treatment and the near casing 3D flow field. For transonic compressor rotors this interaction is more complex, as super- and subsonic flow regions alternate while interacting with the casing treatment. In the present study, an axial slot and a tip blowing casing treatment, which have been developed and optimized for the same tip critical transonic axial compressor rotor (reference rotor) by Streit et al. [1] and Guinet et al. [2], are subject of the investigation. Both casing treatment types showed their capabilities to enhance the compressor stability without losing by means of CFD simulations. Since the higher compressor stability allows a higher blade loading, Streit et al. reduced the blade number of the rotor. Thus, the efficiency was increased due to the reduction of friction losses. However, applying the tip blowing casing treatment to the reduced rotor shows a negative effect on the efficiency. Both casing treatment types recirculate flow from a downstream to an upstream location of the rotor and reinject it to enhance the near casing flow field. Although the working principle of the two casing treatment types are similar, the transfer of the casing treatments from the reference to the reduced rotor show different trends in efficiency. Therefore, the effect of recirculation cannot explain the difference in efficiency. Hence, applying axial slots must include additional flow features, compared to recirculation channels. Compensating effects as in circumferential groove casing treatments and other flow interactions between the near casing flow field and the slot flow are considered. These additional mechanisms of the axial slot casing treatment will be identified and isolated by comparing the two different casing treatment types. The numerical simulations are carried out on a 1.5 stage transonic axial compressor using URANS simulations.


1978 ◽  
Vol 100 (2) ◽  
pp. 279-286 ◽  
Author(s):  
R. J. Dunker ◽  
P. E. Strinning ◽  
H. B. Weyer

The flow field ahead, within, and behind the rotor of a transonic axial compressor designed for a total pressure ratio of 1.51 at a relative tip Mach number of 1.4 has been studied in detail using an advanced laser velocimeter. The tests were carried out at 70 and 100 percent design speed (20,260 rpm) and equivalent mass flows corresponding to the point of maximum isentropic efficiency. The tests yielded quite complete data on the span- and gap-wise velocity profiles, on the three-dimensional shock waves in and outside of the rotor blade channels, and on the blade wakes. Some of the experimental results will be submitted, discussed, and compared to corresponding analytical data of a through-flow calculation. The comparison reveals considerable discrepancies inside the blade row between the two-dimensional calculation and the experiments primarily due to the loss and deviation correlations used, as well as to the distribution of losses and flow angles inside the blade channels.


2000 ◽  
Vol 123 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Xavier Ottavy ◽  
Isabelle Tre´binjac ◽  
Andre´ Vouillarmet

An analysis of the experimental data, obtained by laser two-focus anemometry in the IGV-rotor interrow region of a transonic axial compressor, is presented with the aim of improving the understanding of the unsteady flow phenomena. A study of the IGV wakes and of the shock waves emanating from the leading edge of the rotor blades is proposed. Their interaction reveals the increase in magnitude of the wake passing through the moving shock. This result is highlighted by the streamwise evolution of the wake vorticity. Moreover, the results are analyzed in terms of a time-averaging procedure and the purely time-dependent velocity fluctuations that occur are quantified. It may be concluded that they are of the same order of magnitude as the spatial terms for the inlet rotor flow field. That shows that the temporal fluctuations should be considered for the three-dimensional rotor time-averaged simulations.


1977 ◽  
Vol 99 (2) ◽  
pp. 168-179 ◽  
Author(s):  
Ch. Hirsch ◽  
P. Kool

Hot wire instrumentation and a periodic sampling and averaging technique have been used in order to measure the three-dimensional flow field behind a rotor of an axial compressor stage. A single slanted rotating wire allows the determination of the three components of the blade-to-blade velocity distribution together with informations on the turbulence level. A description is given of the measurement technique, and typical experimental results are presented.


Sign in / Sign up

Export Citation Format

Share Document