Short Term Relaxation Modeling of Valve Stem Packings

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Mohammed Diany ◽  
Abdel-Hakim Bouzid

The long term tightness performance of stuffing-box packings, used in valves, is conditioned by the capacity of its sealing material to maintain a contact pressure to a predetermined minimal threshold value. Due to the creep, this contact pressure decreases with time depending on the creep properties and the stiffness of the housing. Assessing relaxation is a key parameter in determining the tightness performance of a valve stem packing over time. An analytical model based on the packing viscoelastic behavior is developed to assess the contact pressures between the packing material and the stem and the housing and their variation with time. In parallel, an axisymmetric 2D finite element model was build to validate and support the analytical model. The valve stem packing relaxation performance is an important design parameter to consider when selecting compression packings.

Author(s):  
Mohammed Diany ◽  
Abdel-Hakim Bouzid

The long term tightness performance of stuffing box packings, used in valves, is conditioned by the capacity of its material to maintain a contact pressure to a predetermined minimal threshold value. Due to creep, this contact pressure decrease with time depending on the creep properties and the stiffness of the housing. Assessing relaxation is a key parameter in determining the tightness performance of the stuffing box packing over time. Using Ansys software, an axisymmetric 2D finite element model is developed to assess the contact pressures between the packing material and the stem and the housing and its variation with time. The assessment of the packing relaxation is a major obstacle to the good leakage performance of the Stuffing Box Packing.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881745 ◽  
Author(s):  
Ying Zhang ◽  
Zhanghua Lian ◽  
Mi Zhou ◽  
Tiejun Lin

At the high or extra-high temperatures in a natural gas oilfield, where the premium connection is employed by casing, gas leakage in the wellbore is always detected after several years of gas production. As the viscoelastic material’s mechanical properties change with time and temperature, the relaxation of the contact pressure on the connection sealing surface is the main reason for the gas leakage in the high-temperature gas well. In this article, tension-creep experiments were conducted. Furthermore, a constitutive model of the casing material was established by the Prony series method. Moreover, the Prony series’ shift factor was calculated to study the thermo-rheological behavior of the casing material ranging from 120°C to 300°C. A linear viscoelastic model was implemented in ABAQUS, and the simulation results are compared to our experimental data to validate the methodology. Finally, the viscoelastic finite element model is applied to predict the relaxation of contact pressure on the premium connections’ sealing surface versus time under different temperatures. And, the ratio of the design contact pressure and the intending gas sealing pressure is recommended for avoiding the premium connections failure in the high-temperature gas well.


Author(s):  
Mike Weber ◽  
Anja Kömmling ◽  
Matthias Jaunich ◽  
Dietmar Wolff ◽  
Uwe Zencker ◽  
...  

Due to delays in the siting procedure to establish a deep geological repository for spent nuclear fuel and high level waste and in construction of the already licensed Konrad repository for low and intermediate level waste, extended periods of interim storage will become more relevant in Germany. BAM is involved in most of the cask licensing procedures and is responsible for the evaluation of cask-related long-term safety issues. Elastomeric seals are widely used as barrier seals for containers for low and intermediate level radioactive waste. In addition they are also used as auxiliary seals in spent fuel storage and transportation casks (dual purpose casks (DPC)). To address the complex requirements resulting from the described applications, BAM has initiated several test programs for investigating the behavior of elastomeric seals. These include experiments concerning the hyperelastic and viscoelastic behavior at different temperatures and strain rates, the low temperature performance down to −40°C, the influence of gamma irradiation and the aging behavior. The first part of the paper gives an overview of these tests, their relevant results and their possible impact on BAM’s work as a consultant in the framework of approval and licensing procedures. The second part presents an approach of the development of a finite element model using the finite element code ABAQUS®. The long-term goal is to simulate the complex elastomeric behavior in a complete lid closure system under specific operation and accident conditions.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Nazim Ould-Brahim ◽  
Abdel-Hakim Bouzid ◽  
Vladimir Brailovski

Creep is an important factor that contributes to the clamp load loss and tightness failure of bolted joints with and without gaskets over time. Retightening of the joint can be expensive and time consuming; therefore, it is an undesirable solution. Currently, most efforts are put towards reducing load losses directly by tightening to yield, improving material creep properties, or making joint less rigid. An alternative solution of current interest is the use of bolts in shape memory alloys (SMAs). However, very few experimental studies are available, which demonstrate the feasibility of these alloys. The objective of this study is to explore the benefit of shape memory and superelasticity behavior of an SMA stud to recover load losses due to creep and thermal exposure of a gasket in a bolted-joint assembly. This paper explores several venues to investigate and model the thermomechanical behavior of a bolted joint with a nickel–titanium SMA stud. A stiffness-based analytical model which incorporates the Likhachev model of SMA is used as a representation of an experimental bolted-joint assembly. Based on this model, the rigidity of the experimental setup is optimized to make the best use of the SMA properties of the stud. This analytical model is compared with a finite element model, which also implements the Likhachev's material law. Finally, an experimental test bench with a relatively low stiffness representative of standard flanges is used, with and without gaskets to demonstrate the ability of the SMA stud to recover load losses due to gasket creep.


Author(s):  
Nazim Ould-Brahim ◽  
Abdel-Hakim Bouzid ◽  
Vladimir Brailovski

Creep is an important factor that contributes to the clamp load loss and tightness failure of bolted joints. Retightening of the joint can be expensive, time consuming and therefore is an undesirable solution. Currently, most efforts are put towards reducing load losses directly by tightening to yield, improving material creep properties or making joint less rigid. An alternative solution of current interest is the use of bolts in Shape Memory Alloys (SMA). However very few experimental studies are available that demonstrates its feasibility. The objective of this study is to exploit the benefit of the shape memory and superelasticity behaviors of a SMA stud to recover the load losses due to creep and thermal exposure of a gasket in a bolted joint assembly. This paper explores several venues to investigate and model the thermo-mechanical properties of a bolted joint with a nickel-titanium SMA stud. A stiffness-based analytical model which incorporates the Likhachev model of SMA is used as a representation of an experimental bolted joint assembly. Using this model, the rigidity of the experimental setup is optimized to make the best use of the SMA properties of the stud. This analytical model is compared with a Finite Element Model which also implements the Likhachev’s material law. Finally an experimental test bench with a relatively low stiffness representative of EN and JIS flanges is used, with and without gaskets to demonstrate the ability of the SMA stud to recover load losses due to gasket creep.


Author(s):  
Tim Pychynski ◽  
Klaus Dullenkopf ◽  
Hans-Jörg Bauer

This paper presents a theoretical approach to analyse the macroscopic thermo-mechanical behaviour of labyrinth seal fins (knife edges) during and after a rubbing event. The study helps to understand the mechanism behind radial cracking in labyrinth fins and identifies its driving parameters. To begin with, a generic analytical model is developed in order to determine the elastic thermo-mechanical stresses in a thin rotating disk representing the seal fin for a given radial temperature distribution and contact pressure. Secondly, the analytical model is used to explain the high tensile stresses which may result from a rubbing process in labyrinth seals and which are a prerequisite for radial cracks to occur. The driving parameters and simple criteria to compare different materials with respect to cracking are discussed in detail. Crack initiation criteria and fracture mechanics are not considered in this paper. Finally, the analytical model is validated for various seal fin geometries and rub conditions using a three-dimensional Finite-Element model. The interaction of the seal fin with the stator is not taken into account in this numerical simulation. Instead, the rubbing process is modeled by assuming a time-constant surface friction heat flux and contact pressure on the seal fin tip. Both friction heat flux and contact pressure were varied in a sensitivity study in order to account for different rubbing conditions.


1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


1992 ◽  
Vol 20 (2) ◽  
pp. 83-105 ◽  
Author(s):  
J. P. Jeusette ◽  
M. Theves

Abstract During vehicle braking and cornering, the tire's footprint region may see high normal contact pressures and in-plane shear stresses. The corresponding resultant forces and moments are transferred to the wheel. The optimal design of the tire bead area and the wheel requires a detailed knowledge of the contact pressure and shear stress distributions at the tire/rim interface. In this study, the forces and moments obtained from the simulation of a vehicle in stationary braking/cornering conditions are applied to a quasi-static braking/cornering tire finite element model. Detailed contact pressure and shear stress distributions at the tire/rim interface are computed for heavy braking and cornering maneuvers.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sebastian Contreras ◽  
Jonas Dehning ◽  
Matthias Loidolt ◽  
Johannes Zierenberg ◽  
F. Paul Spitzner ◽  
...  

AbstractWithout a cure, vaccine, or proven long-term immunity against SARS-CoV-2, test-trace-and-isolate (TTI) strategies present a promising tool to contain its spread. For any TTI strategy, however, mitigation is challenged by pre- and asymptomatic transmission, TTI-avoiders, and undetected spreaders, which strongly contribute to ”hidden" infection chains. Here, we study a semi-analytical model and identify two tipping points between controlled and uncontrolled spread: (1) the behavior-driven reproduction number $${R}_{t}^{H}$$ R t H of the hidden chains becomes too large to be compensated by the TTI capabilities, and (2) the number of new infections exceeds the tracing capacity. Both trigger a self-accelerating spread. We investigate how these tipping points depend on challenges like limited cooperation, missing contacts, and imperfect isolation. Our results suggest that TTI alone is insufficient to contain an otherwise unhindered spread of SARS-CoV-2, implying that complementary measures like social distancing and improved hygiene remain necessary.


China Foundry ◽  
2021 ◽  
Vol 18 (3) ◽  
pp. 185-191
Author(s):  
Xu-dong Wang ◽  
Zhong Yang ◽  
Qiang Gao ◽  
Li-rong Liu

Sign in / Sign up

Export Citation Format

Share Document