Stress Concentrations in a Hybrid Composite Sheet

1983 ◽  
Vol 50 (4a) ◽  
pp. 845-848 ◽  
Author(s):  
H. Fukuda ◽  
T. W. Chou

This paper examines the load redistribution in a hybrid composite sheet due to fiber breakage. The hybrid composite contains both high modulus and low modulus fibers arranged in alternating positions. Stress concentration factors for both types of fibers immediately adjacent to a group of fractured fibers have been evaluated. The method of influence function and Fourier series representation are adopted. Results of stress concentration factors are presented in terms of the number of fractured fibers and their geometric arrangements. Reduction of the stress concentration factor of the high modulus fibers when dispersed among the low modulus fibers provides a theoretical explanation of the observed “hybrid effect.” The present analysis can be readily incorporated into a failure model taking into account the statistical nature of fiber strength.

1997 ◽  
Vol 64 (4) ◽  
pp. 738-742
Author(s):  
H. A. Luo ◽  
Q. Wang

This paper studies the stress redistribution in a tensile hybrid composite sheet due to the breakage of a high modulus fiber. Employing a continuous distribution of dislocations, a set of singular integral equations is established to analyze the fiber crack impinging upon weakly bonded fiber-matrix interfaces. After solving the integral equations numerically, the stress concentration factors of both high modulus and low modulus fibers are evaluated as a function of loading stress and interfacial parameters. The results are compared with those obtained from shear-lag model solution.


1972 ◽  
Vol 94 (3) ◽  
pp. 815-824 ◽  
Author(s):  
J. C. Gerdeen

An approximate theoretical analysis is presented for the determination of stress concentration factors in thick walled cylinders with sideholes and crossholes. The cylinders are subjected to both internal pressure and external shrink-fit pressure. Stress concentration factors are plotted as functions of the geometrical ratios of outside diameter-to-bore diameter, and bore diameter-to-sidehole diameter. Theoretical results are compared to experimental values available in the literature and results of experiments described in a separate paper.


1983 ◽  
Vol 18 (1) ◽  
pp. 7-14 ◽  
Author(s):  
T H Hyde ◽  
B J Marsden

The finite element method has been used to investigate the behaviour of axisymmetric loaded projections (e.g., bolts) subjected to axial tension and bending. The results show that existing data for stepped shafts, which have the axial tension and bending loads applied remote from the region of the step, cannot be applied to loaded projections with the same geometry. For h/d (head thickness to shank diameter ratio) values greater than 0.66 and 0.41 for axial tension and bending, respectively, the stress concentration factors are independent of h/d, load position, and D/d (head diameter to shank diameter ratio) for D/d in the range 1.5 ≤ D/d ≤ 2.0. Smaller h/d values result in large increases in the stress concentration factors due to dishing of the head.


1964 ◽  
Vol 15 (1) ◽  
pp. 83-96 ◽  
Author(s):  
K. R. Rushton

SummaryThe elastic stress concentration factors for the torsion of solid and hollow shouldered shafts have been determined by means of a pure resistance electrical analogue. Fillet radii ranged from 0.05 to 1.0 times the diameter of the smaller shaft, and the shoulder diameter increased from 1.0 to 8.10 times the diameter of the smaller shaft. A comparison is made with the results of other techniques. A study has also been made of the formation of a plastic region in the neighbourhood of the fillet.


1993 ◽  
Vol 28 (3) ◽  
pp. 223-235 ◽  
Author(s):  
P Stanley ◽  
B J Day

The results of an extensive ‘frozen-stress’ photoelastic investigation of the stresses at isolated oblique holes in thick wide plates subjected to uniform uniaxial tension are used to provide stress concentration factors at holes resulting from any form of biaxial in-plane loading. The work covers plate thickness/hole diameter ratios from 1.3 to 3.0 and hole obliquity angles up to 60 degrees. Over these ranges the effects of changes in the plate thickness/hole diameter ratio are not of major importance but the effects of changes in the angle of obliquity are considerable.


1994 ◽  
Vol 116 (2) ◽  
pp. 49-55 ◽  
Author(s):  
A. K. Soh ◽  
C. K. Soh

A parametric stress analysis of DT/X square-to-square and square-to-round tubular joints subjected to axial loads, in-plane, and out-of-plane bending moments has been performed using the finite element technique in order to provide a sound basis for using such sections in the design of complex structures. The results of this analysis are presented as a set of equations expressing the stress concentration factor as a function of the relevant geometric parameters for various loading conditions. A comparison is made between the results obtained for square-to-square and square-to-round tubular joints and those obtained for round-to-round tubular joints by other researchers. In general, the stress concentration factors for square-to-square tubular joints are the highest, followed by those of the corresponding round-to-round joints, with those of the corresponding square-to-round joints the lowest when the joints are subject to axial loads. In the case of in-plane bending moment, the stress concentration factors for square-to-square joints are generally still the highest, but followed by those of the corresponding square-to-round joints, with those of the corresponding round-to-round joints the lowest. However, the stress concentration factors for the three types of joint are comparable when they are subject to out-of-plane bending moments.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Jialu Wang ◽  
Xiaoyuan Liu

The flexure hinges are the most vulnerable parts in a flexure-based mechanism due to their smaller dimensions and stress concentration characteristics, therefore evaluating the maximum stresses generated in them is crucial for assessing the workspace and the fatigue life of the mechanism. Stress concentration factors characterize the stress concentrations in flexure hinges, providing an analytical and efficient way to evaluate the maximum stress. In this work, by using the ratio of the radius of curvature of the stress-concentrating feature to the minimum thickness as the only fitting variable, generalized equations for both the bending and tension stress concentration factors were obtained for two generalized models, the conic model and the elliptic-arc-fillet model, through fitting the finite element results. The equations are applicable to commonly used flexure hinges including circular, elliptic, parabolic, hyperbolic, and various corner-fillet flexure hinges, with acceptable errors. The empirical equations are tractable and easy to be employed in the design and optimization of flexure-based mechanisms. The case studies of the bridge-type displacement amplifiers demonstrated the effectiveness of the generalized equations for predicting the maximum stresses in flexure-based mechanisms.


2005 ◽  
Vol 127 (2) ◽  
pp. 184-189 ◽  
Author(s):  
Nando Troyani ◽  
Nelson Jaimes ◽  
Gaetano Sterlacci ◽  
Carlos J. Gomes

Whenever regular geometric discontinuities are present the so called stress concentration factors concept is widely used in both analysis and design of loaded components especially when subjected to fatigue, frequently the working condition of vessels. However, recent observations suggest that the influence of member length on the magnitude of the stated factors was not considered in previous analyses. In this work, this observation was studied in the context of cylindrical vessels and it was found that in this case, as well, length could be a critical factor when computing stresses developed as a result of externally applied loads. Accordingly, the values of the finite element calculated theoretical stress concentration factors are computed, for the case of short circular cylinders with circular holes subjected to axial tension, in the context of elastic shell theory, and are presented in a fashion similar to existing published results. It is shown that significantly larger stress concentrations appear for shorter members. The transition length concept defining the threshold between long cylinders and short cylinders is discussed in the context of this study and reported as well.


1962 ◽  
Vol 13 (3) ◽  
pp. 223-234 ◽  
Author(s):  
W. H. Wittrick

SummaryThe stress concentration factors for a family of square holes, with varying degrees of curvature at the corners, and with varying amounts of compact uniform reinforcement on the boundary, have been computed for each of four loading cases. Poisson's ratio was assumed to be 1/3.


2019 ◽  
Vol 23 (5) ◽  
pp. 869-883
Author(s):  
Lei Jiang ◽  
Yongjian Liu ◽  
Jiang Liu ◽  
Bin Liu

Previous studies have shown that the stress concentration factors for 90° square hollow section T- and X-joints can be significantly reduced by filling the chord with concrete and stiffening the chord with perfobond ribs. The current study examined stress concentration factors for non-90° (Y-type) joints. A total of 11 Y-joints were tested under axial tension, and the hot spot stresses were measured. The measured results were employed to evaluate the influence of design parameters on the stress concentrations. In addition, the measured results were used to evaluate finite element models. A parametric study was then undertaken using the finite element models to generate an extensive database of stress concentration factors and to develop parametric design equations to estimate the maximum stress concentration factors on the brace and the chord of concrete-filled square hollow section Y-joints with perfobond ribs. It was found that decreases of 13.7%–59.9% in the stress concentration factors occurred in concrete-filled square hollow section Y-joints stiffened by perfobond ribs relative to conventional square hollow section joints for different loading cases.


Sign in / Sign up

Export Citation Format

Share Document