Fatigue and Burst Analysis of Hy-140(T) Steel Pressure Vessels

1970 ◽  
Vol 92 (1) ◽  
pp. 11-16 ◽  
Author(s):  
J. M. Barsom ◽  
S. T. Rolfe

Increasing use of high-strength steels in pressure-vessel design has resulted from emphasis on decreasing the weight of pressure vessels for certain applications. To demonstrate the suitability of a 140-ksi yield strength steel for use in unwelded pressure vessels, HY-140(T)—a quenched and tempered 5Ni-Cr-Mo-V steel—was fabricated and subjected to various burst and fatigue tests, as well as to various laboratory tests. In general, results of the investigation indicated very good tensile, Charpy, Nil Ductility Transition Temperature (NDT), low-cycle fatigue, and stress-corrosion properties of HY-140(T) steels, as well as very good burst tests results, in comparison with existing high-yield strength pressure-vessel steels. The results also indicate that the HY-140(T) steel should be an excellent material for its originally designed purpose, Naval hull applications.

2006 ◽  
Vol 129 (1) ◽  
pp. 155-161 ◽  
Author(s):  
Milan Veljkovic ◽  
Jonas Gozzi

Pressure vessels have been used for a long time in various applications in oil, chemical, nuclear, and power industries. Although high-strength steels have been available in the last three decades, there are still some provisions in design codes that preclude a full exploitation of its properties. This was recognized by the European Equipment Industry and an initiative to improve economy and safe use of high-strength steels in the pressure vessel design was expressed in the evaluation report (Szusdziara, S., and McAllista, S., EPERC Report No. (97)005, Nov. 11, 1997). Duplex stainless steel (DSS) has a mixed structure which consists of ferrite and austenite stainless steels, with austenite between 40% and 60%. The current version of the European standard for unfired pressure vessels EN 13445:2002 contains an innovative design procedure based on Finite Element Analysis (FEA), called Design by Analysis-Direct Route (DBA-DR). According to EN 13445:2002 duplex stainless steels should be designed as a ferritic stainless steels. Such statement seems to penalize the DSS grades for the use in unfired pressure vessels (Bocquet, P., and Hukelmann, F., 2001, EPERC Bulletin, No. 5). The aim of this paper is to present an investigation performed by Luleå University of Technology within the ECOPRESS project (2000-2003) (http://www.ecopress.org), indicating possibilities towards economic design of pressure vessels made of the EN 1.4462, designation according to the European standard EN 10088-1 Stainless steels. The results show that FEA with von Mises yield criterion and isotropic hardening describe the material behaviour with a good agreement compared to tests and that 5% principal strain limit is too low and 12% is more appropriate.


1964 ◽  
Vol 86 (4) ◽  
pp. 465-471 ◽  
Author(s):  
C. M. Carman ◽  
D. F. Armiento ◽  
H. Markus

Criteria for predicting pressure vessel performance based on fracture toughness are reviewed in general terms. Experimental studies of small pressure vessels fabricated of high toughness, high strength steel 4330V (Mod + Si) are described. Data presented include fatigue life in presence of a small part-through-crack and burst properties of the fatigue cracked cylinders. Interpretation of the fatigue data is based on Paris’ relationship dadN=K4M. The failure stresses are discussed in relation to the stress elevating effect of local bulging on the apparent fracture toughness. The behavior observed in testing full scale high strength pressure vessels fabricated from materials having intermediate fracture toughness, namely, D6A steel at 200,000-psi yield strength and 300M steel at 230,000-psi yield strength and materials having limited fracture toughness, namely, twenty percent nickel maraging steel at 280,000-psi yield strength, are discussed in relation to the ratio of fracture toughness to plane-strain fracture toughness based on the part-through-crack model. Precautions necessary for fabrication and inspection to insure reliable performance are discussed.


1971 ◽  
Vol 93 (4) ◽  
pp. 962-968
Author(s):  
J. H. Gross

In many structural and constructional applications (such as pressure vessels), steels, particularly high-yield-strength steels, are not being utilized as effectively as may be possible. This occurs because the design stress permitted by many specifications and codes is effectively based only on the tensile strength. Thus, the increase in yield-to-tensile-strength ratio with increasing tensile strength is not recognized, and no design-stress credit is given for the proportionately higher yield strength of high-strength steels. Because increased utilization of yield strength will probably require demonstration of the satisfactory fabricability and service performance of high-yield-strength steels, the present paper summarizes the general effects of increased yield strength on formability and weldability and on resistance to failure by stress-dependent modes—overload, brittle fracture, fatigue, and stress corrosion. The present state of knowledge indicates that fabrication does not significantly limit the use of high-strength steels. Although high-yield-strength steels are more difficult to form and weld than lower-strength steels, appropriate forming and welding practices that are not unduly restrictive are in common use for such steels. If design stress is based directly on yield strength, the safety factor against failure by simple overload or by unstable propagation of a crack decreases with increasing yield strength. However, increasing fracture toughness can significantly reduce susceptibility to failure by unstable crack propagation that is the result of low shear energy absorption or the growth of cracks to critical size by fatigue or stress corrosion. In recent years, the fracture toughness of steel has been continuously rising because control of metallurgical factors is continuously improving. For this and other reasons that suggest beneficial effects of yield strength, the possibility of more effectively utilizing the yield strength of steel should be reexamined.


1974 ◽  
Vol 96 (4) ◽  
pp. 292-298 ◽  
Author(s):  
C. P. Royer ◽  
S. T. Rolfe

Studies by the Subcommittee for Effective Utilization of Yield Strength of the Pressure Vessel Research Committee of the Welding Research Council have provided a better understanding of the behavior of pressure vessels in the bursting mode of failure. Specifically, these studies have shown that high-strength steels can be more effectively utilized in pressure vessel applications, and with appropriate safety. However, before specific Code changes are recommended, the possible influence of undetected sharp flaws on the burst pressure, as predicted by the modified Svensson equation, should be established. Accordingly, a study of six notched pressure vessels was conducted to establish the limitations of the Svensson equation with respect to severe strain concentrations, namely, sharp longitudinal notches. Three steels (A517, A516, and 304SS) having a wide range of strain-hardening exponents (0.09, 0.19, and 0.59) were used to fabricate thin-walled pressure vessels (16-in. (406 mm) O.D., 1/2 in. (13 mm) wall thickness, 48-in. (1.22 m) length). Each vessel had a 15-in. (381 mm) long sharp machined notch with flaw depths ranging from 15 to 35 percent of the wall thickness. These vessels were tested hydrostatically to burst at room temperature. All failures were ductile. The results indicate that for pressure vessel steels having nominal yield strength up to 115 ksi (793 MN/m2) and normal ductility and toughness, the modified Svensson equation can be used to predict burst pressure very reliably as long as the flaw depths are less than 25 percent of the wall thickness. On the basis of these test results, as well as burst tests of vessels with moderate strain concentrations such as nozzles and flat end closures, it is recommended that the terms Fcyl and Fsph (factors that describe the effect of strain-hardening exponent on the bursting behavior of cylinders and spheres) be incorporated into the appropriate Code provisions. It is further recommended that the appropriate Code committee consider a possible reduction in the factor of safety against bursting on the basis of the results of this investigation.


2012 ◽  
Vol 710 ◽  
pp. 445-450 ◽  
Author(s):  
G. Sudarshan Rao ◽  
V.M.J. Sharma ◽  
K. Thomas Tharian ◽  
P. Ramesh Narayanan ◽  
K. Sreekumar ◽  
...  

nconel 718 is an age hardenable nickel base supper alloy with high strength at elevated temperatures, and excellent creep properties. It is used extensively in turbine discs, blades where components experience elevated temperatures for prolonged duration, leading to coarsening of the microstructure. To evaluate the life of such components after prolonged exposure to service conditions, LCF properties at such large grain sizes are essential. For this purpose, low cycle fatigue (LCF) behavior of forged Inconel 718 turbine rotor disc having large grain size was studied at room temperature. Total strain controlled fatigue tests were conducted in air at ambient temperature on this alloy in solution treated and aged condition. The results indicated that the material exhibits cyclic strain softening and the cyclic yield strength is lower by 40% compared to the monotonic yield strength. The deformation takes place by multiple planar slip.


Alloy Digest ◽  
1967 ◽  
Vol 16 (1) ◽  

Abstract Republic 50 is a high-strength low-alloy structural steel recommended where high yield strength and toughness combined with good weldability and corrosion resistance are required. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and compressive, shear, and bend strength as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-205. Producer or source: Republic Steel Corporation.


Alloy Digest ◽  
2003 ◽  
Vol 52 (8) ◽  

Abstract Bethlehem Lukens Plate (BLP) offers five grades of Spartan high-strength steels with tensile yield strength over 690 MPa (100 ksi). These alloys contain copper for precipitation reactions. They also have improved weldability and toughness compared to ASTM A 514 and A 543 grades. This datasheet provides information on composition, microstructure, hardness, and tensile properties as well as fracture toughness. It also includes information on forming and joining. Filing Code: SA-518. Producer or source: Bethlehem Lukens Plate.


2021 ◽  
Vol 13 (6) ◽  
pp. 3482
Author(s):  
Seoungho Cho ◽  
Myungkwan Lim ◽  
Changhee Lee

High-strength reinforcing bars have high yield strengths. It is possible to reduce the number of reinforcing bars placed in a building. Accordingly, as the amount of reinforcement decreases, the spacing of reinforcing bars increases, workability improves, and the construction period shortens. To evaluate the structural performance of high-strength reinforcing bars and the joint performance of high-strength threaded reinforcing bars, flexural performance tests were performed in this study on 12 beam members with the compressive strength of concrete, the yield strength of the tensile reinforcing bars, and the tensile reinforcing bar ratio as variables. The yield strengths of the tensile reinforcement and joint methods were used as variables, and joint performance tests were performed for six beam members. Based on this study, the foundation for using high-strength reinforcing bars with a design standard yield strength equal to 600 MPa was established. Accordingly, mechanical joints of high-strength threaded reinforcing bars (600 and 670 MPa) can be used. All six specimens were destroyed under more than the expected nominal strength. Lap splice caused brittle fractures because it was not reinforced in stirrup. Increases of 21% to 47% in the loads of specimens using a coupler and a lock nut were observed. Shape yield represents destruction—a section must ensure sufficient ductility after yielding. Therefore, a coupler and lock nut are effective.


1967 ◽  
Vol 182 (1) ◽  
pp. 657-684 ◽  
Author(s):  
J. Spence ◽  
W. B. Carlson

Nozzles in cylindrical vessels have been of special interest to designers for some time and have offered a field of activity for many research workers. This paper presents some static and fatigue tests on five designs of full size pressure vessel nozzles manufactured in two materials. Supporting and other published work is reviewed showing that on the basis of the same maximum stress mild steel vessels give the same fatigue life as low alloy vessels. When compared on the basis of current codes it is shown that mild steel vessels may have five to ten times the fatigue life of low alloy vessels unless special precautions are taken.


Sign in / Sign up

Export Citation Format

Share Document