3D RANS Simulation of Turbulent Flow and Combustion in a 5 MW Reverse-Flow Type Gas Turbine Combustor

Author(s):  
Daero Joung ◽  
Kang Y. Huh

This study is concerned with 3D RANS simulation of turbulent flow and combustion in a 5 MW commercial gas turbine combustor. The combustor under consideration is a reverse flow, dry low NOx type, in which methane and air are partially mixed inside swirl vanes. We evaluated different turbulent combustion models to provide insights into mixing, temperature distribution, and emission in the combustor. Validation is performed for the models in STAR-CCM+ against the measurement data for a simple swirl flame (http://public.ca.sandia.gov/TNF/swirlflames.html). The standard k-ε model with enhanced wall treatment is employed to model turbulent swirl flow, whereas eddy break-up (EBU), presumed probability density function laminar flamelet model, and partially premixed coherent flame model (PCFM) are tried for reacting flow in the combustor. Independent simulations are carried out for the main and pilot nozzles to avoid flashback and to provide realistic inflow boundary conditions for the combustor. Geometrical details such as air swirlers, vane passages, and liner holes are all taken into account. Tested combustion models show similar downstream distributions of the mean flow and temperature, while EBU and PCFM show a lifted flame with stronger effects of swirl due to limited increase in axial momentum by expansion.

Author(s):  
Daero Jeong ◽  
Kang Y. Huh

This study is concerned with numerical simulation of a simple swirl flame and a 5MW commercial gas turbine combustor both operating on methane/air. Validation is performed for turbulent flow and combustion models against some measurement data (http://public.ca.sandia.gov/TNF/swirlflames.html). Evaluation is performed for the standard k-e and the realizable k-e models in the nonreacting swirl flow and the EBU (eddy breakup) and the PPDF (presumed probability density function) models in the reacting flow of the 5 MW commercial combustor. Independent simulations are carried out for the main and pilot nozzles to avoid flashback and to provide realistic inflow boundary conditions for the combustor. Important geometrical details such as air swirlers, vane passages and liner holes are taken into account. Different turbulence models result in similar flow patterns with varying sizes of the recirculation pockets in the central region and at the outside corner. The EBU and the PPDF models show similar downstream distributions of mean flow and temperature, while the EBU shows a lifted flame with a stronger effect of swirl due to limited increase of axial momentum by volume expansion near the nozzle.


Author(s):  
Daero Joung ◽  
Kang Y. Huh ◽  
Yunho An

This paper describes simulation of a small stationary gas turbine combustor of a reverse flow, semi-silo type for power generation. The premixed coherent flame model (PCFM) is applied for partially premixed methane/air with an imposed downstream flame area density (FAD) to avoid flashback and incomplete combustion. Physical models are validated against the measurements of outlet temperature, product gas composition, and NO emission at the low operating pressure. Parametric study is performed to investigate the effect of load and pilot/total (P/T) fuel ratio on mixing characteristics and the resulting temperature distribution and pollutant emissions. As the P/T fuel ratio increases, the high temperature region over 1900 K enhances reaction of the mixture from the main nozzle in the primary mixing zone. For low P/T ratios, the pilot stream dilutes the mixture, on the contrary, to suppress reaction with an increasing height of the lifted flame. The NO is associated with the unmixedness as well as the mean temperature level and tends to increase with increasing load and P/T ratio. The high operating pressure does not affect overall velocity and temperature distribution, while it tends to increase NO and liner temperature under the given boundary conditions.


Author(s):  
Sandeep Kedukodi ◽  
Srinath Ekkad

Established numerical approaches for performing detailed flow analysis happens to be an effective tool for industry based applied research. In the present study, computations are performed on multiple gas turbine combustor geometries for turbulent, non-reactive and reactive swirling flow conditions for an industrial swirler. The purpose of this study is to identify the location of peak convective heat transfer along the combustor liner under swirling inlet flow conditions and to investigate the influence of combustor geometry on the flow field. Instead of modeling the actual swirler along with the combustor, an inlet swirl flow profile is applied at the inlet boundary based on previous literature. Initially, the computed results are validated against available experimental data for an inlet Reynolds number flow of 50000 using a 2D axi-symmetric flow domain for non-reacting conditions. A constant heat flux on the liner is applied for the study. Two turbulence models (RNG k-ε and k-ω SST) are utilized for the analysis based on its capability to simulate swirling flows. It is found that both models predict the peak liner heat transfer location similar to experiments. However, k-ε RNG model predicts heat transfer magnitude much closer to the experimental values except displaying an additional peak whereas k-ω model predicts only one peak but tends to over-predict in magnitude. Since the overall characteristic liner heat transfer trend is captured well by the latter one, it is chosen for future computations. A 3D sector (30°) model results also show similar trends as 2D studies. Simulations are then extended to 3 different combustors (Case 1: full cylinder and Case 2 and 3: cylinders with downstream contractions having reduced exit areas) by adopting the same methodology for same inlet flow conditions. Non-reacting simulations predict that the peak heat transfer location is marginally reduced by the downstream contraction of the combustor. However the peak location shifts towards downstream due to the presence of accelerated flow. Reacting flow simulations are performed with Flamelet Generation Manifold (FGM) model for simulating premixed combustion for the same inlet flow conditions as above. It is observed that Case 3 predicts a threefold increase in the exit flow velocity in comparison to non-reacting flow simulations. The liner heat transfer predictions show that both geometries predict similar peak temperatures. However, only one fourth of the initial liner length experiences peak temperature for Case 1 whereas the latter continues to feel the peak till the end. This behavior of Case 3 can be attributed to rapid convection of high temperature products downstream due to the prevailing accelerated flow.


Author(s):  
D. Biswas ◽  
K. Kawano ◽  
H. Iwasaki ◽  
M. Ishizuka ◽  
S. Yamanaka

The main aim or the present work is to explore computational fluid dynamics and related turbulence and combustion models for application to the design, understanding and development of gas turbine combustor. Validation studies were conducted using the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) scheme to solve the relevant steady, elliptical partial differential equations of the conservation of mass, momentum, energy and chemical species in three-dimensional cylindrical co-ordinate system to simulate the gas turbine combustion chamber configurations. A modified version of k-ε turbulence model was used for characterization of local turbulence in gas turbine combustor. Since, in the present study both diffusion and pre-mixed combustion were considered, in addition to familiar bi-molecular Arhenius relation, influence of turbulence on reaction rates was accounted for based on the eddy break up concept of Spalding and was assumed that the local reaction rate was proportional to the rate of dissipation of turbulent eddies. Firstly, the validity of the present approach with the turbulence and reaction models considered is checked by comparing the computed results with the standard experimental data on recirculation zone, mean axial velocity and temperature profiles, etc. for confined, reacting and non-reacting flows with reasonably well defined boundary conditions. Finally, the results of computation for practical gas turbine combustor using combined diffusion and pre-mixed combustion for different combustion conditions are discussed.


Author(s):  
Joost L. H. P. Sallevelt ◽  
Artur K. Pozarlik ◽  
Martin Beran ◽  
Lars-Uno Axelsson ◽  
Gerrit Brem

Combustion tests with bioethanol and diesel as a reference have been performed in OPRA's 2 MWe class OP16 gas turbine combustor. The main purposes of this work are to investigate the combustion quality of ethanol with respect to diesel and to validate the developed CFD model for ethanol spray combustion. The experimental investigation has been conducted in a modified OP16 gas turbine combustor, which is a reverse-flow tubular combustor of the diffusion type. Bioethanol and diesel burning experiments have been performed at atmospheric pressure with a thermal input ranging from 29 to 59 kW. Exhaust gas temperature and emissions (CO, CO2, O2, NOx) were measured at various fuel flow rates while keeping the air flow rate and air temperature constant. In addition, the temperature profile of the combustor liner has been determined by applying thermochromic paint. CFD simulations have been performed with ethanol for five different operating conditions using ANSYS FLUENT. The simulations are based on a 3D RANS code. Fuel droplets representing the fuel spray are tracked throughout the domain while they interact with the gas phase. A liner temperature measurement has been used to account for heat transfer through the flame tube wall. Detailed combustion chemistry is included by using the steady laminar flamelet model. Comparison between diesel and bioethanol burning tests show similar CO emissions, but NOx concentrations are lower for bioethanol. The CFD results for CO2 and O2 are in good agreement, proving the overall integrity of the model. NOx concentrations were found to be in fair agreement, but the model failed to predict CO levels in the exhaust gas. Simulations of the fuel spray suggest that some liner wetting might have occurred. However, this finding could not be clearly confirmed by the test data.


1999 ◽  
Vol 121 (2) ◽  
pp. 243-248 ◽  
Author(s):  
D. M. Costura ◽  
P. B. Lawless ◽  
S. H. Fankel

A dynamic combustor model is developed for inclusion into a one-dimensional full gas turbine engine simulation code. A flux-difference splitting algorithm is used to numerically integrate the quasi-one-dimensional Euler equations, supplemented with species mass conservation equations. The combustion model involves a single-step, global finite-rate chemistry scheme with a temperature-dependent activation energy. Source terms are used to account for mass bleed and mass injection, with additional capabilities to handle momentum and energy sources and sinks. Numerical results for cold and reacting flow for a can-type gas turbine combustor are presented. Comparisons with experimental data from this combustor are also made.


Author(s):  
K. Sudhakar Reddy ◽  
D. N. Reddy ◽  
C. M. Vara Prasad

This paper presents the results of numerical investigations of a turbulent, swirling and recirculating flow without combustion inside a reverse flow gas turbine combustor. In order to establish the characteristics of fuel distribution patterns of the fuel spray injected into swirling flows, flow fields are analyzed inside the swirl combustor for varying amount of swirl strength using a commercial CFD code fluent 6.1.22. Three Dimensional computations are performed to study the influence of the various parameters like injection pressure, flow Reynolds number and Swirl Strength on the fuel distribution patterns. The model predictions are compared against the experimental results, and its applicability over a wide range of flow conditions was investigated. It was observed from the CFD analysis, that the fuel decay along the axis is faster with low injection pressures compared to higher injection pressures. With higher Reynolds numbers the fuel patterns are spreading longer in the axial direction. The higher momentum of the air impedes the radial mixing and increases the constraint on the jet spread. The results reveal that an increase in swirl enhances the mixing rate of the fuel and air and causes recirculation to be more pronounced and to occur away form the fuel injector. The CFD predictions are compared with the experimental data from the phototransistor probe measurements, and good agreement has been achieved.


Author(s):  
R. K. R. Katreddy ◽  
S. R. Chakravarthy

The present study focuses on identifying and resolving large-scale energy containing structures and turbulent eddies in a typical gas turbine combustor single nozzle rig, using particle image velocimetry in cold flow. A generic fuel-air nozzle through a swirler is integrated with a sudden expansion square duct with optical access to perform laser diagnostics. Experiments are conducted to analyze the swirl flow field under starting and operating flow conditions. Three-component velocities are obtained in cross-sectional planes of Z/D = 0, 1.25, and 2.5 (normalized by the nozzle diameter), and two-component velocities are obtained in the mid-plane along the longitudinal (Z-) axis from Z/D = 0 to 2.5D. Velocity splitting is performed using spatial Gaussian smoothing with a kernel with filter width equal to integral scale is performed over the velocity fields to resolve the field of large-scale energy containing eddies. Proper orthogonal decomposition is performed over the large-scale velocity field, and the modes obtained indicate the existence of the precessing vortex core (PVC), formation of small scales Kelvin-Helmholtz (K-H) vortices for Z/D < 1.25D, and large-scale growing K-H structures in 1.25D < Z/D < 2.5D. Turbulent kinetic energy (TKE) is obtained from the turbulent velocity fluctuations below the integral length scale and is observed to be higher at the interface of the corner recirculation zone (CRZ) and central toroidal recirculation zone (CTRZ). Resolving the swirl velocity field obtained in the above manner into large-scale structures formed by the PVC, CTRZ, K-H vortices, CRZ, and small-scale turbulence field, indicates the clear distinction in rapid mixing zones and unsteady convective zones. The length-scales and zones of these structures within the swirl combustor are identified.


Sign in / Sign up

Export Citation Format

Share Document