swirl flow
Recently Published Documents


TOTAL DOCUMENTS

640
(FIVE YEARS 121)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Vol 173 ◽  
pp. 107425
Author(s):  
Dongyun Wang ◽  
Artem Khalatov ◽  
E. Shi-Ju ◽  
Igor Borisov

ACS Omega ◽  
2022 ◽  
Author(s):  
Yongchao Rao ◽  
Zehui Liu ◽  
Shuli Wang ◽  
Lijun Li

2022 ◽  
Author(s):  
Dantong Shi ◽  
Kuan-Ting Lin ◽  
Milind A. Jog ◽  
Raj M. Manglik

Abstract The influence of swirl flow on enhanced forced convection in wavy-plate-fin cores has been investigated. Three-dimensional computational simulations were carried out for steady-state, periodically developed flow of air (Pr ~ 0.71) with channel walls subject to constant-uniform temperature and flow rates in the range 50 = Re = 4000. The recirculation that develops in the wall troughs and grows to an axial helix is scaled by the Swirl number Sw. As Sw increases, tornado-shaped vortices appear in the wave trough region mid-channel height, then extend longitudinally to encompass majority of the flow channel. As shown by the local wall-shear and heat transfer coefficient variations, the boundary-layer thinning upstream of the wave peak assists to intensify the momentum and heat transfer. However, the flow recirculation in wave trough impedes the local heat transfer at low Sw due to flow stagnation but promotes it at high Sw because of swirl-augmented fluid mixing. Swirling flows also create pressure drag that contributes substantively to the overall pressure loss. Its proportion grows as Sw, corrugation severity, and fin spacing increases to as much as 80% of the total pressure drop. The fin-wall curvature-induced secondary circulation nevertheless produces significantly enhanced convection, and more so in flows with higher Sw. It is quantified by Ff (or j), which is seen to increase log-linearly as fin corrugation aspect ratio and/or fin spacing ratio increases; the influence of cross-section aspect ratio is found to be marginal.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 399
Author(s):  
Guoshuai Ju ◽  
Tie Yan ◽  
Xiaofeng Sun

In the drilling of horizontal wells, the drill cuttings tend to settle down on the low side of the annulus due to gravity and form a stationary bed, which results in hole cleaning problems. In this paper, a novel type of drillpipe with an elliptical shape was proposed to alleviate inadequate hole cleaning during the drilling of horizontal wells. A three-dimensional computational fluid dynamic (CFD) Eulerian-Eulerian approach with the Realizable k-ɛ turbulence model was developed to predict the solid–liquid two-phase flow in the annular space. Numerical examples were given to investigate the influence of different parameters on cuttings’ transport behavior, and the elliptical drillpipe was compared with the circular drillpipe. The annular cuttings concentration, annular pressure drop, and hole cleaning efficiency were evaluated. The numerical results clarify the potential of the elliptical drillpipe to enhance the hole cleaning efficiency without significantly increasing the annular pressure drop. Due to the swirl flow and secondary flow caused by the rotation of the curvature wall, the swaying phenomenon of drill cuttings’ distribution along the rotation direction of drillpipe was observed and enhanced the cuttings transport ability. Using the elliptical drillpipe as a joint-type tool can improve hole cleaning performance. Under the optimum conditions applied in this study, the hole cleaning efficiency increased by nearly 18%.


Author(s):  
Zhengfeng Liu ◽  
Hui Yang ◽  
Haijiang He ◽  
Peiquan Yu ◽  
Yikun Wei ◽  
...  

The characteristics of internal flow and performance of a centrifugal fan is greatly dependent on the inflow pattern. As the fan is subjected to incoming flow from an upstream tube, the size and geometry of the tube affect the three-dimensional motion of local flow and possibly degrades the aerodynamic performance of the fan. In this work, we performed a numerical investigation on the internal flow in a centrifugal fan subjected to incoming flow from an upstream bended inflow tube of various radii using the steady and unsteady Reynolds-averaged Navier-Stokes (RANS and URANS) simulation approaches. The effects of the non-axisymmetric pre-swirl flow generated due to the curvature of the bended inflow tube are demonstrated by analyzing the internal flow characteristics of the fan, including the spatial distributions and temporal variations of pressure field and streamlines, pressure fluctuations in the upstream tube, the inflow and outflow sections of the impeller, and the circumferential distributions of velocity and pressure in the impeller. The numerical results reveal that as the inflow tube is curved with larger curvature (smaller radius of the bended section), the pre-swirl inflow is strong and deteriorates the static pressure rise and static pressure efficiency of the centrifugal fan more remarkably, and the circumferential non-uniformity of pressure and velocity distributions appears inside of the channels of the fan. As the radius of the bended section increases, the instability of the internal flow gets more pronounced, as represented by the stronger pressure fluctuations at the inflow and outflow sections. The prediction capabilities of RANS and URANS approaches are also analyzed based on the numerical data and we found that the latter is more reliable in predicting the performance of the fan.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012106
Author(s):  
I V Litvinov ◽  
E U Gorelikov ◽  
S I Shtork

Abstract The experimental study of an isothermal swirl flow with the formation of a precessing vortex core in the radial swirler upon non-confinement and confinement conditions is carried out. Velocity profiles are obtained with varying Re and guide vane angle, changing the swirl number S. Four acoustic sensors and LDA system are used to measure Strouhal number as the function of the integral swirl number in the range from 0.5 <S <0.8. It is shown that the unsteady flow with PVC effect significantly changes upon non-confinement and confinement conditions.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7768
Author(s):  
Yuxin Liu ◽  
Benzhuang Yue ◽  
Xiaozhi Kong ◽  
Hua Chen ◽  
Huawei Lu

Advanced brush seal technology has a significant impact on the performance and efficiency of gas turbine engines. However, in highly inlet swirling environments, the bristles of a brush seal tend to circumferentially slip, which may lead to aerodynamic instability and seal failure. In this paper, seven different front plate geometries were proposed to reduce the impact of high inlet swirl on the bristle pack, and a three-dimensional porous medium model was carried out to simulate the brush seal flow characteristics. Comparisons of a plane front plate with a relief cavity, plane front plate with axial drilled holes, anti-“L”-type plate and their relative improved configurations on the pressure and flow fields as well as the leakage behavior were conducted. The results show that the holed front plate can effectively regulate and control the upstream flow pattern of the bristle pack, inducing the swirl flow to move radially inward, which results in decreased circumferential velocity component. The anti-“L” plate with both axial holes and one radial hole was observed to have the best effect on reducing the swirl of those investigated. The swirl velocity upstream the bristle pack can decline 50% compared to the baseline model with plane front plate, and the circumferential aerodynamic forces on the bristles, which scale with the swirl dynamic head, are reduced by a factor of 4. This could increase the bristle stability dramatically. Moreover, the front plate geometry does not influence the leakage performance significantly, and the application of the axial hole on the front plate will increase the leakage slightly by around 3.5%.


2021 ◽  
Vol 9 (11) ◽  
pp. 1201
Author(s):  
Hongbo Shi ◽  
Jianping Yuan ◽  
Yalin Li

In deep ocean transportation pipeline, the swirling internal flow has a significant impact on the marine minerals transportation efficiency and safety. Therefore, the present work investigates various swirl flow motions for the slurry transport characteristics of the multi-sized particulate flow in a horizontal pipeline. Since the internal flow is a liquid-solid-solid mixture, a steady-state three-dimensional Eulerian-Eulerian multiphase approach in conjunction with the k-ω SST turbulence model is implemented for numerical simulation in the commercial CFD software ANSYS FLUENT 17.0. Numerical predictions of the mixture solid concentration distributions are generally in good conformance with experimental measurements. It is clearly revealed the transition of flow regime from heterogeneous to pseudo-homogeneous with the increasing level of swirl intensity at inlet. Compared to non-swirling flow, the swirling flow is of benefit to the multi-sized solid suspension capacity and the transportation efficiency. Moreover, the intense swirling vortex results in a strong influence on the characteristics of the lubrication layer formed by fine solid particles near the bottom of the pipe. These results provide valuable insights regarding the influence of swirl flow on the transport process for deep ocean mining.


Sign in / Sign up

Export Citation Format

Share Document