The Onset of Convection in a Layer of Cellular Porous Material: Effect of Temperature-Dependent Conductivity Arising From Radiative Transfer

2010 ◽  
Vol 132 (7) ◽  
Author(s):  
D. A. Nield ◽  
A. V. Kuznetsov

The onset of convection in a horizontal layer of a cellular porous material heated from below is investigated. The problem is formulated as a combined conductive-convective-radiative problem in which radiative heat transfer is treated as a diffusion process. The problem is relevant to cellular foams formed from plastics, ceramics, and metals. It is shown that the variation of conductivity with temperature above that of the cold boundary leads to an increase in the critical Rayleigh number (based on the conductivity of the fluid at that boundary temperature) and an increase in the critical wave number. On the other hand, the critical Rayleigh number based on the conductivity at the mean temperature decreases with increase in the thermal variation parameter if the radiative contribution to the effective conductivity is sufficiently large compared with the nonradiative component.

1967 ◽  
Vol 29 (3) ◽  
pp. 545-558 ◽  
Author(s):  
D. A. Nield

The onset of convection induced by thermal and solute concentration gradients, in a horizontal layer of a viscous fluid, is studied by means of linear stability analysis. A Fourier series method is used to obtain the eigenvalue equation, which involves a thermal Rayleigh numberRand an analogous solute Rayleigh numberS, for a general set of boundary conditions. Numerical solutions are obtained for selected cases. Both oscillatory and monotonic instability are considered, but only the latter is treated in detail. The former can occur when a strongly stabilizing solvent gradient is opposed by a destablizing thermal gradient. When the same boundary equations are required to be satisfied by the temperature and concentration perturbations, the monotonic stability boundary curve in the (R, S)-plane is a straight line. Otherwise this curve is concave towards the origin. For certain combinations of boundary conditions the critical value ofRdoes not depend onS(for some range ofS) or vice versa. This situation pertains when the critical horizontal wave-number is zero.A general discussion of the possibility and significance of convection at ‘zero’ wave-number (single convection cell) is presented in an appendix.


1968 ◽  
Vol 32 (2) ◽  
pp. 393-398 ◽  
Author(s):  
D. A. Nield

Linear perturbation analysis is applied to the problem of the onset of convection in a horizontal layer of fluid heated uniformly from below, when the fluid is bounded below by a rigid plate of inlinite conductivity and above by a solid layer of finite conductivity and finite thickness. The critical Rayleigh number and wave-number are found for various thickness ratios and thermal conductivity ratios. Both numbers are reduced by the presence of a boundary of finite (rather than infinite) conductivity in qualitative agreement with the observation of Koschmieder (1966).


2021 ◽  
Vol 2057 (1) ◽  
pp. 012012
Author(s):  
A I Fedyushkin

Abstract The paper presents the results of a numerical study of convective heat transfer in a long horizontal layer heated from below with and without the vibration effect of the lower wall. The simulation was carried out on the basis of solving the Navier-Stokes 2D equations for an incompressible fluid in the Boussinesq approximation. It is shown that the influence of vibrations of the lower heated wall on the wave number of the convective flow roll structure, on the time and on the critical Rayleigh number of convection. The influence of controlled harmonic vibrations of wall on the structure of convective flow in the Rayleigh-Benard problem has been investigated. It is shown that the wave number of the periodic convective structure, the critical Rayleigh number, and the time of occurrence of Rayleigh-Benard convection under the vertical vibration effect on the horizontal layer from the lower wall are reduced.


1987 ◽  
Vol 42 (1) ◽  
pp. 13-20
Author(s):  
B. S. Dandapat

The onset of convection in a horizontal layer of a saturated porous medium heated from below and rotating about a vertical axis with uniform angular velocity is investigated. It is shown that when S ∈ σ >1, overstability cannot occur, where ε is the porosity, σ the Prandtl number and S is related to the heat capacities of the solid and the interstitial fluid. It is also shown that for small values of the rotation parameter T1, finite amplitude motion with subcritical values of Rayleigh number R (i.e. R < Re, where Re is the critical Rayleigh number according to linear stability theory) is possible. For large values of T1, overstability is the preferred mode.


1982 ◽  
Vol 120 ◽  
pp. 411-431 ◽  
Author(s):  
Karl C. Stengel ◽  
Dean S. Oliver ◽  
John R. Booker

The Rayleigh number R, in a horizontal layer with temperature-dependent viscosity can be based on the viscosity at T0, the mean of the boundary temperatures. The critical Rayleigh number Roc for fluids with exponential and super-exponential viscosity variation is nearly constant at low values of the ratio of the viscosities at the top and bottom boundaries; increases at moderate values of the viscosity ratio, reaching a maximum at a ratio of about 3000, and then decreases. This behaviour is explained by a simple physical argument based on the idea that convection begins first in the sublayer with maximum Rayleigh number. The prediction of Palm (1960) that certain types of temperature-dependent viscosity always decrease Roc is confirmed by numerical results but is not relevant to the viscosity variations typical of real liquids. The infinitesimal-amplitude state assumed by linear theory in calculating Roc does not exist because the convection jumps immediately to a finite amplitude at R0c. We observe a heat-flux jump at R0c exceeding 10% when the viscosity ratio exceeds 150. However, experimental measurements of R0c for glycerol up to a viscosity ratio of 3400 are in good agreement with the numerical predictions when the effects of a temperature-dependent expansion coefficient and thermal diffusivity are included.


1995 ◽  
Vol 117 (4) ◽  
pp. 808-821 ◽  
Author(s):  
R. J. Goldstein ◽  
R. J. Volino

The onset and development of flow in a thick horizontal layer subject to a near-constant flux heating from below has been studied experimentally. The overall heat-flux-based Rayleigh number, Ra*, ranges from 2 × 108 to 7 × 1010. Flow visualization shows the growth and breakdown of a conduction layer adjacent to the heated surface. Convection is characterized by the release of warm meandering plumes and thermals from a boundary layer. The planform of convection at the heated surface begins with a pattern of small spots suggestive of Be´nard cells. Some of these cells expand, forming a larger cell pattern. This continues until a quasi-steady state is reached in which the former cell boundaries form a slowly moving pattern of warm lines on the heated surface. The lines are believed to be the source of the plumes and thermals. Quantitatively, the onset of convection occurs at a constant (critical) Rayleigh number based on the conduction layer thickness, Raδ. Based on the first observation of fluid motion, this critical Rayleigh number is approximately 1300. Based on the heated surface temperature the critical Rayleigh number is 2700. The nondimensional wavenumber associated with the observed instabilities at the onset of convection is about 2.2.


1987 ◽  
Vol 185 ◽  
pp. 205-234 ◽  
Author(s):  
R. W. Walden ◽  
Paul Kolodner ◽  
A. Passner ◽  
C. M. Surko

Heat-transport measurements are reported for thermal convection in a rectangular box of aspect’ ratio 10 x 5. Results are presented for Rayleigh numbers up to 35Rc, Prandtl numbers between 2 and 20, and wavenumbers between 0.6 and 1.0kc, where Rc and kc are the critical Rayleigh number and wavenumber for the onset of convection in a layer of infinite lateral extent. The measurements are in good agreement with a phenomenological model which combines the calculations of Nusselt number, as a function of Rayleigh number and roll wavenumber for two-dimensional convection in an infinite layer, with a nonlinear amplitude-equation model developed to account for sidewell attenuation. The appearance of bimodal convection increases the heat transport above that expected for simple parallel-roll convection.


1999 ◽  
Author(s):  
Pouya Amili ◽  
Yanis C. Yortsos

Abstract We study the linear stability of a two-phase heat pipe zone (vapor-liquid counterflow) in a porous medium, overlying a superheated vapor zone. The competing effects of gravity, condensation and heat transfer on the stability of a planar base state are analyzed in the linear stability limit. The rate of growth of unstable disturbances is expressed in terms of the wave number of the disturbance, and dimensionless numbers, such as the Rayleigh number, a dimensionless heat flux and other parameters. A critical Rayleigh number is identified and shown to be different than in natural convection under single phase conditions. The results find applications to geothermal systems, to enhanced oil recovery using steam injection, as well as to the conditions of the proposed Yucca Mountain nuclear waste repository. This study complements recent work of the stability of boiling by Ramesh and Torrance (1993).


2008 ◽  
Vol 130 (11) ◽  
Author(s):  
M. J. Kohl ◽  
M. Kristoffersen ◽  
F. A. Kulacki

Experiments are reported on initial instability, turbulence, and overall heat transfer in a porous medium heated from below. The porous medium comprises either water or a water-glycerin solution and randomly stacked glass spheres in an insulated cylinder of height:diameter ratio of 1.9. Heating is with a constant flux lower surface and a constant temperature upper surface, and the stability criterion is determined for a step heat input. The critical Rayleigh number for the onset of convection is obtained in terms of a length scale normalized to the thermal penetration depth as Rac=83/(1.08η−0.08η2) for 0.02<η<0.18. Steady convection in terms of the Nusselt and Rayleigh numbers is Nu=0.047Ra0.91Pr0.11(μ/μ0)0.72 for 100<Ra<5000. Time-averaged temperatures suggest the existence of a unicellular axisymmetric flow dominated by upflow over the central region of the heated surface. When turbulence is present, the magnitude and frequency of temperature fluctuations increase weakly with increasing Rayleigh number. Analysis of temperature fluctuations in the fluid provides an estimate of the speed of the upward moving thermals, which decreases with distance from the heated surface.


1975 ◽  
Vol 70 (4) ◽  
pp. 689-703 ◽  
Author(s):  
Eric Graham

A procedure for obtaining numerical solutions to the equations describing thermal convection in a compressible fluid is outlined. The method is applied to the case of a perfect gas with constant viscosity and thermal conductivity. The fluid is considered to be confined in a rectangular region by fixed slippery boundaries and motions are restricted to two dimensions. The upper and lower boundaries are maintained at fixed temperatures and the side boundaries are thermally insulating. The resulting convection problem can be characterized by six dimension-less parameters. The onset of convection has been studied both by obtaining solutions to the nonlinear equations in the neighbourhood of the critical Rayleigh number Rc and by solving the linear stability problem. Solutions have been obtained for values of the Rayleigh number up to 100Rc and for pressure variations of a factor of 300 within the fluid. In some cases the fluid velocity is comparable to the local sound speed. The Nusselt number increases with decreasing Prandtl number for moderate values of the depth parameter. Steady finite amplitude solutions have been found in all the cases considered. As the horizontal dimension A of the rectangle is increased, the length of time needed to reach a steady state also increases. For large values of A the solution consists of a number of rolls. Even for small values of A, no solutions have been found where one roll is vertically above another.


Sign in / Sign up

Export Citation Format

Share Document