Recent Advances of Internal Cooling Techniques for Gas Turbine Airfoils

Author(s):  
Minking K. Chyu ◽  
Sin Chien Siw

The performance goal of modern gas turbine engines, both land-base and air-breathing engines, can be achieved by increasing the turbine inlet temperature (TIT). The level of TIT in the near future can reach as high as 1700 °C for utility turbines and over 1900 °C for advanced military engines. Advanced and innovative cooling techniques become one of the crucial major elements supporting the development of modern gas turbines, both land-based and air-breathing engines with continual increment of turbine inlet temperature (TIT) in order to meet higher energy demand and efficiency. This paper discusses state-of-the-art airfoil cooling techniques that are mainly applicable in the mainbody and trailing edge section of turbine airfoil. Potential internal cooling designs for near-term applications based on current manufacturing capabilities are identified. A literature survey focusing primarily on the past four to five years has also been performed.

Author(s):  
Katsuyoshi Tada ◽  
Kei Inoue ◽  
Tomo Kawakami ◽  
Keijiro Saitoh ◽  
Satoshi Tanimura

Gas-turbine combined-cycle (GTCC) power generation is clean and efficient, and its demand will increase in the future from economic and social perspectives. Raising turbine inlet temperature is an effective way to increase combined cycle efficiency and contributes to global environmental conservation by reducing CO2 emissions and preventing global warming. However, increasing turbine inlet temperature can lead to the increase of NOx emissions, depletion of the ozone layer and generation of photochemical smog. To deal with this issue, MHPS (MITSUBISHI HITACHI POWER SYSTEMS) and MHI (MITSUBISHI HEAVY INDUSTRIES) have developed Dry Low NOx (DLN) combustion techniques for high temperature gas turbines. In addition, fuel flexibility is one of the most important features for DLN combustors to meet the requirement of the gas turbine market. MHPS and MHI have demonstrated DLN combustor fuel flexibility with natural gas (NG) fuels that have a large Wobbe Index variation, a Hydrogen-NG mixture, and crude oils.


2020 ◽  
Vol 13 (3) ◽  
pp. 215-222
Author(s):  
Akram Luaibi Ballaoot ◽  
Naseer Hamza

The gas turbine engines are occupied an important sector in the energy production and aviation industry and this important increase day after day for their features. One of the most important parameters that limit the gas turbine engine power output is the turbine inlet temperature. The higher is the turbine inlet temperature, the higher is the power output or thrust but this increases of risks of blade thermal failure due to metallurgical limits. Thus the need for a good and efficient process of blade cooling can lead to the best compromise between a powerful engine and safe operation. There are two major methods: film or external cooling and internal cooling inside the blade itself. . In the past number of years there has been considerable progress in turbine cooling research and this paper is limited to review a few selected publications to reflect recent development in turbine blade film cooling. The maximum drop in the surface temperature of the gas turbine blade and associated thermal stress – due to incorporating cooling systems- were 735 ˚C, 1217 N/mm2 respectively.


Author(s):  
Tsubura Nishiyama ◽  
Masumi Iwai ◽  
Norio Nakazawa ◽  
Masafumi Sasaki ◽  
Haruo Katagiri ◽  
...  

The seven-year program, designated “Research & Development of Automotive Ceramic Gas Turbine Engine (CGT Program)”, was started in 1990 with the object of demonstrating the advantageous potentials of ceramic gas turbines for automotive use. This CGT Program is conducted by Petroleum Energy Center. The basic engine is a 100kW, single-shaft regenerative engine having turbine inlet temperature of 1350°C and rotor speed of 110000rpm. In the forth year of the program, the engine components were experimentally evaluated and improved in the various test rigs, and the first assembly test including rotating and stationary components, was performed this year under the condition of turbine inlet temperature of 1200°C.


Author(s):  
Ana C. Ferreira ◽  
Senhorinha F. Teixeira ◽  
José C. Teixeira ◽  
Manuel L. Nunes ◽  
Luís B. Martins

Energy degradation can be calculated by the quantification of entropy and loss of work and is a common approach in power plant performance analysis. Information about the location, amount and sources of system deficiencies are determined by the exergy analysis, which quantifies the exergy destruction. Micro-gas turbines are prime movers that are ideally suited for cogeneration applications due to their flexibility in providing stable and reliable power. This paper presents an exergy analysis by means of a numerical simulation of a regenerative micro-gas turbine for cogeneration applications. The main objective is to study the best configuration of each system component, considering the minimization of the system irreversibilities. Each component of the system was evaluated considering the quantitative exergy balance. Subsequently the optimization procedure was applied to the mathematical model that describes the full system. The rate of irreversibility, efficiency and flaws are highlighted for each system component and for the whole system. The effect of turbine inlet temperature change on plant exergy destruction was also evaluated. The results disclose that considerable exergy destruction occurs in the combustion chamber. Also, it was revealed that the exergy efficiency is expressively dependent on the changes of the turbine inlet temperature and increases with the latter.


Author(s):  
Mirko Baratta ◽  
Francesco Cardile ◽  
Daniela Anna Misul ◽  
Nicola Rosafio ◽  
Simone Salvadori ◽  
...  

Abstract The even more stringent limitations set by the European Commission on pollutant emissions are forcing gas turbine manufacturers towards the redesign of the most important components to increase efficiency and specific power. Current trends in gas turbine design include an increased attention to the design of cooling systems and enhanced best practices for the study of components interaction. At the same time, the recent crisis suffered by the oil and gas industry reduced the interest in brand new gas turbines, thus increasing the service market. Therefore, original equipment manufacturers would rather propose the replacement of specific components within the gas turbine plant during its maintenance with compatible elements that are likely to guarantee increased performance and longer residual lifetime at a more desirable nominal working point. In the present activity the cooling system of the TG20 heavy-duty gas turbine has been redesigned to increase the turbine inlet temperature while contemporaneously reducing the total amount of coolant mass-flow. Specifically, the cooling scheme of the rotating blade of the first turbine row has been reviewed at the Department of Energy (DENERG) of Politecnico di Torino in cooperation with EthosEnergy Italia S.p.a.. The paper presents a new design, which, starting from the original solution featuring fifteen smooth pipes, adopts an improved geometry characterized by the presence of turbulators. The activity has been carried out using Computational Fluid Dynamics (CFD) for the coolant/blade interaction and one-dimensional models developed at EthosEnergy for the redistribution of the cooling flows in the cavities. The mutual effects between the coolant fluid and the blade are analyzed using a Conjugate Heat Transfer (CHT) approach with Star-CCM+. The validation of the computational approach has been performed exploiting the experimental data available for the NASA C3X test case. The TG20 rotating blade of the first turbine row has been analyzed considering the two different coolant configurations. The impact of the main flow on the thermal field has initially been included by imposing a temperature field on the blade surface. The latter field has in turn been obtained by means of a separate computation for the solid only. Full CHT simulations has hence been performed, thus quantifying the accuracy of the proposed approach. The obtained results are discussed in terms of thermo-fluid-dynamic effects.


Author(s):  
Yukiko Agata ◽  
Shinichi Akabayashi ◽  
Shinya Ishikawa ◽  
Yuji Matsumura

Decreases in inlet mass flow due to rises in ambient temperature during the summer lead to a decrease in the power output of gas turbines. In order to recover lost output, this study employed a mist atomization system using efficient spray nozzles, developed mainly as a technology for urban heat-island mitigation, installing the system in an inlet air flow path of a gas turbine at Higashi-Niigata thermal power station No.4 train, a commercial plant. The nozzles can efficiently decrease inlet air temperature of gas turbines because of their minute atomized mist size and highly-efficient evaporation properties. A flow path in the upstream of the inlet filter was used for mist evaporation by the system. This path is unique to the power plant, and is intended to prevent snow particles from direct entry. Model and field tests to confirm safe and effective operation of the system developed were performed in order to address possible concerns associated with the introduction of this system. As a basic consideration, wind tunnel experiments using nozzles were performed. Through the experiments, the most suitable nozzles were chosen, and effectiveness of the mist atomization was evaluated. The basic specifications of the system were determined from the evaluation results. At the same time, flow-field in the inlet air channel of the intended gas turbine was analyzed, and positioning of the atomization devices optimized. The mist atomization system that was developed was installed in a gas turbine at the power plant. To prevent excessive atomization from possibly causing erosion, a target value of 95% humidity at the compressor inlet was set, and a thermo-hygrometer was installed downstream of the inlet silencer to monitor humidity. As a result of the operation, no signs of erosion were detected in a major inspection conducted about one year following the introduction of the system. Another concern had to do with immediate changes in the state of the gas turbine due to mist atomization stoppages. To evaluate effects of the stoppages, field tests in the plant were performed, resulting in no significant changes in turbine inlet temperature and exhaust gas temperature. Combustion pressure oscillations was also not observed. From these results, it has been confirmed that the system can be operated safely. After activating the atomization system, inlet temperature decreased by up to about 7.5 degrees Celsius and power output increased by up to 13 MW in the gas turbine.


Author(s):  
Nicola Aldi ◽  
Nicola Casari ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
Pier Ruggero Spina ◽  
...  

Over recent decades, the variability and high costs of the traditional gas turbine fuels (e.g. natural gas), have pushed operators to consider low-grade fuels for running heavy-duty frames. Synfuels, obtained from coal, petroleum or biomass gasification, could represent valid alternatives in this sense. Although these alternatives match the reduction of costs and, in the case of biomass sources, would potentially provide a CO2 emission benefit (reduction of the CO2 capture and sequestration costs), these low-grade fuels have a higher content of contaminants. Synfuels are filtered before the combustor stage, but the contaminants are not removed completely. This fact leads to a considerable amount of deposition on the nozzle vanes due to the high temperature value. In addition to this, the continuous demand for increasing gas turbine efficiency, determines a higher combustor outlet temperature. Current advanced gas turbine engines operate at a turbine inlet temperature of (1400–1500) °C which is high enough to melt a high proportion of the contaminants introduced by low-grade fuels. Particle deposition can increase surface roughness, modify the airfoil shape and clog the coolant passages. At the same time, land based power units experience compressor fouling, due to the air contaminants able to pass through the filtration barriers. Hot sections and compressor fouling work together to determine performance degradation. This paper proposes an analysis of the contaminant deposition on hot gas turbine sections based on machine nameplate data. Hot section and compressor fouling are estimated using a fouling susceptibility criterion. The combination of gas turbine net power, efficiency and turbine inlet temperature (TIT) with different types of synfuel contaminants highlights how each gas turbine is subjected to particle deposition. The simulation of particle deposition on one hundred (100) gas turbines ranging from 1.2 MW to 420 MW was conducted following the fouling susceptibility criterion. Using a simplified particle deposition calculation based on TIT and contaminant viscosity estimation, the analysis shows how the correlation between type of contaminant and gas turbine performance plays a key role. The results allow the choice of the best heavy-duty frame as a function of the fuel. Low-efficiency frames (characterized by lower values of TIT) show the best compromise in order to reduce the effects of particle deposition in the presence of high-temperature melting contaminants. A high-efficiency frame is suitable when the contaminants are characterized by a low-melting point thanks to their lower fuel consumption.


Author(s):  
Takao Mikami ◽  
Shinya Tanaka ◽  
Masashi Tatsuzawa ◽  
Takeshi Sakida

The CGT301 ceramic gas turbine is being developed under a contract from NEDO as a part of the New Sunshine Program of MTTI to improve the performance of gas turbines for cogeneration through the replacement of hot section components with ceramic parts. The project is conducted in three phases. The project currently in Phase 2 focuses on the development of the “primary type” ceramic gas turbine (turbine inlet temperature: 1,200°C). CGT301 is a recuperated, single-shaft, ceramic gas turbine. The turbine is a two-stage axial flow type. The major effort has been on the development of the turbine which consists of metallic disks and inserted ceramic blades (“hybrid rotor”). Prior to engine tests, component tests were performed on the hybrid rotor to prove the validity of the design concepts and their mechanical integrity. The engine equipped with all ceramic components except the second stage turbine blades was tested and evaluated. The engine was operated successfully for a total of 23 hours without failure at the rated engine speed of 56,000 rpm with the turbine inlet temperature of 1,200 °C. Further, the engine equipped with all ceramic components was successfully tested for one hour under the same conditions. Engine testing of the “primary type” ceramic gas turbine is continuing to improve the performance and the reliability of the system for the purpose of moving forward to the development of the “pilot” ceramic gas turbine (turbine inlet temperature: 1,350 °C) as the final target of this project. This paper summarizes the progress in the development of the CGT301 with the emphasis on the test results of the hybrid rotor.


Author(s):  
Michael Schneider ◽  
Jens Dickhoff ◽  
Karsten Kusterer ◽  
Wilfried Visser ◽  
Eike Stumpf ◽  
...  

Abstract Civil aviation is growing 4.7% per annum. Alternative propulsion systems are necessary to reduce emissions causing global warming. The electrification of aircraft propulsion systems has the potential to use renewable energy and reduce the environmental footprint of aviation. At present, full electric flight appears to be feasible for small aircraft only, due to the power density of batteries which is approximately 45-times lower than that of kerosene. Hybrid electric concepts may present a bridging technology towards more electrified aviation for short/mid-range aircraft. The hybrid concept combines the benefits of electrical power with conventional turboshaft engine technology. Within the framework of the ‘HyFly’ project (supported by the German Luftfahrtforschungsprogramm LuFo V-3), a hybrid electric concept for a short/mid-range 19 PAX aircraft is studied. In this paper the results of a preliminary design exercise of the gas turbine used in this concept is presented. Conventional aircraft gas turbines deliver maximum power only at take-off for a short period of time. At this power setting temperature and stress levels are at the extreme and dominate overall engine life consumption. In the HyFly concept, the gas turbine inlet temperature is kept constant during the entire flight. The engine is not driven into the extreme take-off power setting, resulting in a significant increase of engine life. The constant power setting also offers the opportunity to optimize efficiency especially around the base load point. For take-off and an emergency power rating, extra power is provided by batteries. In this paper, a survey of existing engine technology is presented considering suitability for the concept. The impact of improvement of component efficiencies, increase in cycle pressure ratio and turbine inlet temperature, relative to the state-of-the-art, is analyzed using a B&B-AGEMA in-house gas turbine simulation tool. In addition, a weight model is presented for preliminary estimation of engine mass. Finally, requirements for the individual gas turbine sub-component design and performance are defined. This will build the basis for further component design.


1980 ◽  
Author(s):  
R. L. Graves

The difficulties encountered in past and present efforts to operate direct coal-fired gas turbines are substantial. Hence the development effort required to assure a reliable, high-temperature pressurized fluidized bed (PFBC) combined cycle may be very expensive and time consuming. It is, therefore, important that the benefit of achieving high-temperature operation, which is primarily increased efficiency, be clearly understood at the outset of such a development program. This study characterizes the effects of PFBC temperature and pressure on plant efficiency over a wide range of values. There is an approximate three percentage point advantage by operating at a gas turbine inlet temperature of 870 C (1600 F) instead of 538 C (1000 F). Optimum pressure varies with the gas turbine inlet temperature, but ranges from 0.4–1.0 MPa (4–10 atm). An alternate PFBC cycle offering high efficiency at a peak temperature of about 650 C (1200 F) is also discussed.


Sign in / Sign up

Export Citation Format

Share Document