Power Output Increase due to Decreasing Gas Turbine Inlet Temperature by Mist Atomization
Decreases in inlet mass flow due to rises in ambient temperature during the summer lead to a decrease in the power output of gas turbines. In order to recover lost output, this study employed a mist atomization system using efficient spray nozzles, developed mainly as a technology for urban heat-island mitigation, installing the system in an inlet air flow path of a gas turbine at Higashi-Niigata thermal power station No.4 train, a commercial plant. The nozzles can efficiently decrease inlet air temperature of gas turbines because of their minute atomized mist size and highly-efficient evaporation properties. A flow path in the upstream of the inlet filter was used for mist evaporation by the system. This path is unique to the power plant, and is intended to prevent snow particles from direct entry. Model and field tests to confirm safe and effective operation of the system developed were performed in order to address possible concerns associated with the introduction of this system. As a basic consideration, wind tunnel experiments using nozzles were performed. Through the experiments, the most suitable nozzles were chosen, and effectiveness of the mist atomization was evaluated. The basic specifications of the system were determined from the evaluation results. At the same time, flow-field in the inlet air channel of the intended gas turbine was analyzed, and positioning of the atomization devices optimized. The mist atomization system that was developed was installed in a gas turbine at the power plant. To prevent excessive atomization from possibly causing erosion, a target value of 95% humidity at the compressor inlet was set, and a thermo-hygrometer was installed downstream of the inlet silencer to monitor humidity. As a result of the operation, no signs of erosion were detected in a major inspection conducted about one year following the introduction of the system. Another concern had to do with immediate changes in the state of the gas turbine due to mist atomization stoppages. To evaluate effects of the stoppages, field tests in the plant were performed, resulting in no significant changes in turbine inlet temperature and exhaust gas temperature. Combustion pressure oscillations was also not observed. From these results, it has been confirmed that the system can be operated safely. After activating the atomization system, inlet temperature decreased by up to about 7.5 degrees Celsius and power output increased by up to 13 MW in the gas turbine.