Characterization of the Mechanical Properties of Monolayer Molybdenum Disulfide Nanosheets Using First Principles

Author(s):  
R. Ansari ◽  
S. Malakpour ◽  
M. Faghihnasiri ◽  
S. Ajori

Recently, synthesized inorganic two-dimensional monolayer nanostructures are very promising to be applied in electronic devices. This article explores the mechanical properties of a monolayer molybdenum disulfide (MoS2) including Young's bulk and shear moduli and Poisson's ratio by applying density functional theory (DFT) calculation based on the generalized gradient approximation (GGA). The results demonstrate that the elastic properties of MoS2 nanosheets are less than those of graphene and hexagonal boron-nitride (h-BN) nanosheets. However, their Poisson's ratio is found to be higher than that of graphene and h-BN nanosheet. It is also observed that due to the special structure of MoS2, the thickness of nanosheet changes when the axial strain is applied.

2018 ◽  
Vol 32 (23) ◽  
pp. 1850248
Author(s):  
M. I. Babalola ◽  
B. I. Adetunji ◽  
B. E. Iyorzor ◽  
A. Yaya

The structural, electronic, elastic and mechanical properties of ZrNiPb half-Heusler alloy under pressure ranging from 0 to 25 GPa have been studied using the density functional theory within the generalized gradient approximation (GGA). The results of ambient condition were in good agreement with the available theoretical and experimental data. Our electronic structure and density of state results show that ZrNiPb is an indirect bandgap semiconductor half-Heusler alloy with a narrow energy gap of 0.375 eV. Based on the calculated elastic constants (C[Formula: see text], C[Formula: see text] and C[Formula: see text]), Young’s modulus (E), Poisson’s ratio ([Formula: see text]), Shear modulus (G), Zener anisotropy factor (A) and brittle-ductile behaviors under pressure have been discussed. The calculated Poisson’s ratio shows that ZrNiPb undergoes a relatively small volume change during uniaxial deformation. We show that the chemical bonds in ZrNiPb are stronger due to the high value of C[Formula: see text].


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Kun Yuan ◽  
Meng-Yang Li ◽  
Yan-Zhi Liu ◽  
Ren-Zhong Li

The intrinsic negative Poisson’s ratio effect in 2-dimensional nanomaterials have attracted a lot of research interests due to its superior mechanical properties, and new mechanisms have emerged in the nanoscale. In this paper, we designed a novel graphyne-like two-dimensional carbon nanostructure with a “butterfly” shape (GL-2D-1) and its configuration isomer with a “herring-bone” form (GL-2D-2) by means of density functional theoretical calculation and predicted their in-plane negative Poisson’s ratio effect and other mechanical properties. Both GL-2D-1 and GL-2D-2 present a significant negative Poisson’s ratio effect under different specific strains conditions. By contrast, GL-2D-2 presents a much stronger negative Poisson’s ratio effect and mechanical stability than does GL-2D-1. It is hoped that this work could be a useful structural design strategy for the development of the 2D carbon nanostructure with the intrinsic negative Poisson’s ratio.


2021 ◽  
Vol 24 (1) ◽  
pp. 13702
Author(s):  
S.G. Kuma ◽  
M.M. Woldemariam

The structural, electronic, elastic and optical properties of tetragonal (P4mm) phase of Pb0.5Sn0.5TiO3 (PSTO) and Pb0.5Sn0.5Ti0.5(Zr0.5)O3 (PSTZO) are examined by first-principles calculations based on the density functional theory (DFT) using the pseudo-potential plane wave (PP-PW) scheme in the frame of generalized gradient approximation (GGA). We have calculated the ground state properties such as equlibrium lattice constants, volume, bulk modulus and its pressure derivative. From elastic constants, mechanical parameters such as anisotropy factor, elastic modulus and Poisson's ratio are obtained from the Voigt-Reuss-Hill average approximation. Rather than their averages, the directional dependence of elastic modulus, and Poisson's ratio are modelled and visualized in the light of the elastic properties of both systems. In addition, some novel results, such as Debye temperatures, and sound velocities are obtained. Moreover, we have presented the results of the electronic band structure, densities of states and charge densities. These results were in favourable agreement with the existing theoretical data. The optical dielectric function and energy loss spectrum of both systems are also computed. Born effective charge (BEC) of each atoms for both systems is computed from functional perturbation theory (DFPT). Finally, the spontaneous polarization is also determined from modern theory of polarization to be 0.8662 C/m2 (PSTO) and 1.0824 C/m2 (PSTZO).


2018 ◽  
Vol 32 (32) ◽  
pp. 1850362 ◽  
Author(s):  
A. Afaq ◽  
Abu Bakar ◽  
Sajid Anwar ◽  
Waheed Anwar ◽  
Fazal-e-Aleem

The first-principles study of cubic perovskites SmXO3 (X = Al and Co) for elastic, mechanical and optical properties is done in the framework of density functional theory (DFT). Optimized structural parameters are obtained first to find mechanical and optical properties of the materials. These obtained structural parameters are in accordance with the published data. The cubic elastic parameters C[Formula: see text], C[Formula: see text] and C[Formula: see text] are then calculated by using generalized gradient approximation (GGA) as an exchange correlation functional in Kohn–Sham equations. Poisson’s ratio, shear modulus, Young’s modulus and anisotropic factor are deduced from these elastic parameters. These compounds are found to be elastically anisotropic and SmAlO3 is brittle while SmCoO3 is ductile. Their covalent nature is also discussed by using Poisson’s ratio. In addition, optical properties like absorption coefficient, extinction coefficient, energy loss function, dielectric function, refractive index, reflectivity and optical conductivity are studied. This study predicts that SmAlO3 and SmCoO3 are suitable for optoelectronic devices.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3244 ◽  
Author(s):  
Francesco Baino ◽  
Elisa Fiume

Porosity is recognized to play a key role in dictating the functional properties of bioactive scaffolds, especially the mechanical performance of the material. The mechanical suitability of brittle ceramic and glass scaffolds for bone tissue engineering applications is usually evaluated on the basis of the compressive strength alone, which is relatively easy to assess. This work aims to investigate the porosity dependence of the elastic properties of silicate scaffolds based on the 45S5 composition. Highly porous glass–ceramic foams were fabricated by the sponge replica method and their elastic modulus, shear modulus, and Poisson’s ratio were experimentally determined by the impulse excitation technique; furthermore, the failure strength was quantified by compressive tests. As the total fractional porosity increased from 0.52 to 0.86, the elastic and shear moduli decreased from 16.5 to 1.2 GPa and from 6.5 to 0.43 GPa, respectively; the compressive strength was also found to decrease from 3.4 to 0.58 MPa, whereas the Poisson’s ratio increased from 0.2692 to 0.3953. The porosity dependences of elastic modulus, shear modulus and compressive strength obeys power-law models, whereas the relationship between Poisson’s ratio and porosity can be described by a linear approximation. These relations can be useful to optimize the design and fabrication of porous biomaterials as well as to predict the mechanical properties of the scaffolds.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yanan Gao ◽  
Yunlong Wang ◽  
Taiping Lu ◽  
Liuzhou Li ◽  
Jinwen Wu ◽  
...  

With the further development of deep rock mechanics engineering, such as the exploitation and utilization of geothermal resources, the exploitation of deep mineral resources, and the safe disposal of nuclear waste, the study of mechanical properties of deep high-temperature rock is gaining the attention of the researchers. However, not only the high temperature but also the cooling condition/method that will be used in the construction such as drilling cooling will also greatly affect the mechanical properties of the rock. In this paper, the mechanical behaviour and the evolution of the mechanical properties of the high-temperature (600°C–1,000°C) granite under different cooling methods are studied. The following conclusions can be obtained: (1) The peak stress of the granite decreases with the heating temperature. Compared with natural cooling, water cooling has a more significant effect on strength degradation. (2) The increase of the heating temperature increases the maximum axial strain of the granite. The water cooling method more greatly induces the maximum axial strain of granite than the natural cooling. The maximum axial strain of the specimen under the water cooling reaches 117.3% of that under natural cooling (800°C). (3) The elastic modulus of the granite decreases with the heating temperature. Water cooling will have a stronger effect on the reduction of the elastic modulus than natural cooling. The maximum difference value (2.02 GPa) of the elastic modulus under the different cooling methods occurs at the temperature of 800°C. (4) Poisson’s ratio of the granite increases with heating temperature, and the cooling method does not have an evident effect on it. The relationship between Poisson’s ratio and the heating temperature under different cooling methods can be described using the linear model. (5) According to the influence of the temperature on the peak stress, the elastic modulus, and Poisson’s ratio, the heating temperature domain can be divided into the unapparent zone, the significant zone, and the mitigation zone. (6) The thermal stress due to the nonuniform temperature field and the different thermal expansion coefficients is incompatible. Such incompatibility stresses the essences of the degradation of the mechanical properties of the granite.


Crystals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 307 ◽  
Author(s):  
Xinghe Luan ◽  
Hongbo Qin ◽  
Fengmei Liu ◽  
Zongbei Dai ◽  
Yaoyong Yi ◽  
...  

Ni3Al-based superalloys have excellent mechanical properties which have been widely used in civilian and military fields. In this study, the mechanical properties of the face-centred cubic structure Ni3Al were investigated by a first principles study based on density functional theory (DFT), and the generalized gradient approximation (GGA) was used as the exchange-correlation function. The bulk modulus, Young’s modulus, shear modulus and Poisson’s ratio of Ni3Al polycrystal were calculated by Voigt-Reuss approximation method, which are in good agreement with the existing experimental values. Moreover, directional dependences of bulk modulus, Young’s modulus, shear modulus and Poisson’s ratio of Ni3Al single crystal were explored. In addition, the thermodynamic properties (e.g., Debye temperature) of Ni3Al were investigated based on the calculated elastic constants, indicating an improved accuracy in this study, verified with a small deviation from the previous experimental value.


2010 ◽  
Vol 25 (3) ◽  
pp. 545-555 ◽  
Author(s):  
Uday Chippada ◽  
Bernard Yurke ◽  
Noshir A. Langrana

Besides biological and chemical cues, cellular behavior has been found to be affected by mechanical cues such as traction forces, surface topology, and in particular the mechanical properties of the substrate. The present study focuses on completely characterizing the bulk linear mechanical properties of such soft substrates, a good example of which are hydrogels. The complete characterization involves the measurement of Young's modulus, shear modulus, and Poisson's ratio of these hydrogels, which is achieved by manipulating nonspherical magnetic microneedles embedded inside them. Translating and rotating these microneedles under the influence of a known force or torque, respectively, allows us to determine the local mechanical properties of the hydrogels. Two specific hydrogels, namely bis-cross-linked polyacrylamide gels and DNA cross-linked polyacrylamide gels were used, and their properties were measured as a function of gel concentration. The bis-cross-linked gels were found to have a Poisson's ratio that varied between 0.38 and 0.49, while for the DNA-cross-linked gels, Poisson's ratio varied between 0.36 and 0.49. The local shear moduli, measured on the 10 μm scale, of these gels were in good agreement with the global shear modulus obtained from a rheology study. Also the local Young's modulus of the hydrogels was compared with the global modulus obtained using bead experiments, and it was observed that the inhomogeneities in the hydrogel increases with increasing cross-linker concentration. This study helps us fully characterize the properties of the substrate, which helps us to better understand the behavior of cells on these substrates.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5644
Author(s):  
Sun-Youn Ryou ◽  
Chang-Soon Lee ◽  
In-Sik Cho ◽  
Auezhan Amanov

Glass with strong durability and transparency has been in the spotlight in various fields, including displays. Elastic and shear moduli and Poisson’s ratio are important properties of glasses. The purpose of this study is to evaluate the change in mechanical properties, such as the dynamic elastic modulus and Poisson’s ratio, with respect to the chemical strengthening time of glass for display applications, as measured by static and dynamic methods. The basic measurement principle of the dynamic method is to measure acoustic speed or resonant frequency using an ultrasonic generator. The mechanical properties of both non-strengthened and chemically strengthened glasses were investigated. It was found that the strength of the chemically strengthened glass decreased when chemical strengthening time increased. Chemical strengthening increased the bending strength and decreased the elastic modulus due to the introduction of compressive residual stress at the surface.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 120
Author(s):  
Qing Peng

Although meta-generalized-gradient approximations (meta-GGAs) are believed potentially the most accurate among the efficient first-principles calculations, the performance has not been accessed on the nonlinear mechanical properties of two-dimensional nanomaterials. Graphene, like two-dimensional silicon carbide g-SiC, has a wide direct band-gap with applications in high-power electronics and solar energy. Taken g-SiC as a paradigm, we have investigated the performance of meta-GGA functionals on the nonlinear mechanical properties under large strains, both compressive and tensile, along three deformation modes using Strongly Constrained and Appropriately Normed Semilocal Density Functional (SCAN) as an example. A close comparison suggests that the nonlinear mechanics predicted from SCAN are very similar to that of Perdew-Burke-Ernzerhof (PBE) formulated functional, a standard Density Functional Theory (DFT) functional. The improvement from SCAN calculation over PBE calculation is minor, despite the considerable increase of computing demand. This study could be helpful in selection of density functionals in simulations and modeling of mechanics of materials.


Sign in / Sign up

Export Citation Format

Share Document