Multisensing Fuel Injector in Turbocharged Gasoline Direct Injection Engines

Author(s):  
Fadi Estefanous ◽  
Shenouda Mekhael ◽  
Tamer Badawy ◽  
Naeim Henein ◽  
Akram Zahdeh

With the increasingly stringent emissions and fuel economy standards, there is a need to develop new advanced in-cylinder sensing techniques to optimize the operation of the internal combustion engine. In addition, reducing the number of on-board sensors needed for proper engine monitoring over the lifetime of the vehicle would reduce the cost and complexity of the electronic system. This paper presents a new technique to enable one engine component, the fuel injector, to perform multiple sensing tasks in addition to its primary task of delivering the fuel into the cylinder. The injector is instrumented within an electric circuit to produce a signal indicative of some injection and combustion parameters in electronically controlled spark ignition direct injection (SIDI) engines. The output of the multisensing fuel injector (MSFI) system can be used as a feedback signal to the engine control unit (ECU) for injection timing control and diagnosis of the injection and combustion processes. A comparison between sensing capabilities of the multisensing fuel injector and the spark plug-ion sensor under different engine operating conditions is also included in this study. In addition, the combined use of the ion current signals produced by the MSFI and the spark plug for combustion sensing and control is demonstrated.

Author(s):  
Fadi Estefanous ◽  
Shenouda Mekhael ◽  
Tamer Badawy ◽  
Naeim Henein ◽  
Akram Zahdeh

With the increasingly stringent emissions and fuel economy standards, there is a need to develop new advanced in-cylinder sensing techniques to optimize the operation of internal combustion engine. In addition, reducing the number of on-board sensors needed for proper engine monitoring over the life time of the vehicle would reduce the cost and complexity of the electronic system. This paper presents a new technique to enable one engine component, the fuel injector, to perform multiple sensing tasks in addition to its primary task of delivering the fuel into the cylinder. The injector is instrumented within an electric circuit to produce a signal indicative of some injection and combustion parameters in electronically controlled spark ignition direct injection (SIDI) engines. The output of the multi sensing fuel injector (MSFI) system can be used as a feedback signal to the engine control unit (ECU) for injection timing control and diagnosis of the injection and combustion processes. A comparison between sensing capabilities of the multi-sensing fuel injector and the spark plug-ion sensor under different engine operating conditions is also included in this study. In addition, the combined use of the ion current signals produced by the MSFI and the spark plug for combustion sensing and control is demonstrated.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Samuel Ayad ◽  
Swapnil Sharma ◽  
Rohan Verma ◽  
Naeim Henein

Detection of combustion-related phenomena such as misfire, knock, and sporadic preignition is very important for the development of electronic controls needed for the gasoline direct injection engines to meet the production goals in power, fuel economy, and low emissions. This paper applies several types of combustion ionization sensors, and a pressure transducer that directly senses the in-cylinder combustion, and the knock sensor which is an accelerometer that detects the impact of combustion on engine structure vibration. Experimental investigations were conducted on a turbocharged four-cylinder gasoline direct injection engine under operating conditions that produce the above phenomena. One of the cylinders is instrumented with a piezo quartz pressure transducer, MSFI (multi-sensing fuel injector), a stand-alone ion current probe, and a spark plug applied to act as an ion current sensor. A comparison is made between the capabilities of the pressure transducer, ion current sensors, and the knock sensor in detecting the above phenomena. The signals from in-cylinder combustion sensors give more accurate information about combustion than the knock sensor. As far as the feasibility and cost of their application in production vehicles, the spark plug sensor and MSFI appear to be the most favorable, followed by the stand-alone mounted sensor which is an addition to the engine.


Author(s):  
Samuel Ayad ◽  
Swapnil Sharma ◽  
Rohan Verma ◽  
Naeim Henein

Detection of combustion related phenomena such as misfire, knock and sporadic preignition is very important for the development of electronic controls needed for the gasoline direct injection engines to meet the production goals in power, fuel economy, and low emissions. This paper applies several types of combustion ionization sensors, and a pressure transducer that directly sense the in-cylinder combustion, and the knock sensor which is an accelerometer that detects the impact of combustion on engine structure vibration. Experimental investigations were conducted on a turbocharged four cylinders gasoline direct injection engine under operating conditions that produce the above phenomena. One of the cylinders is instrumented with a Piezo quartz pressure transducer, MSFI (Multi sensing fuel injector), a standalone ion current probe, and a spark plug applied to act as an ion current sensor. A comparison is made between the capabilities of the pressure transducer, ion current sensors, and the knock sensor in detecting the above phenomena. The signals from in-cylinder combustion sensors give more accurate information about combustion than the knock sensor. As far as the feasibility and cost of their application in production vehicles the spark plug sensor and MSFI appear to be the most favorable, followed by the Standalone mounted sensor which is an addition to the engine.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Kaushik Saha ◽  
Sibendu Som ◽  
Michele Battistoni ◽  
Yanheng Li ◽  
Shaoping Quan ◽  
...  

A numerical study of two-phase flow inside the nozzle holes and the issuing spray jets for a multihole direct injection gasoline injector has been presented in this work. The injector geometry is representative of the Spray G nozzle, an eight-hole counterbore injector, from the engine combustion network (ECN). Simulations have been carried out for a fixed needle lift. The effects of turbulence, compressibility, and noncondensable gases have been considered in this work. Standard k–ε turbulence model has been used to model the turbulence. Homogeneous relaxation model (HRM) coupled with volume of fluid (VOF) approach has been utilized to capture the phase-change phenomena inside and outside the injector nozzle. Three different boundary conditions for the outlet domain have been imposed to examine nonflashing and evaporative, nonflashing and nonevaporative, and flashing conditions. Noticeable hole-to-hole variations have been observed in terms of mass flow rates for all the holes under all the operating conditions considered in this study. Inside the nozzle holes mild cavitationlike and in the near-nozzle region flash-boiling phenomena have been predicted when liquid fuel is subjected to superheated ambiance. Under favorable conditions, considerable flashing has been observed in the near-nozzle regions. An enormous volume is occupied by the gasoline vapor, formed by the flash boiling of superheated liquid fuel. Large outlet domain connecting the exits of the holes and the pressure outlet boundary appeared to be necessary leading to substantial computational cost. Volume-averaging instead of mass-averaging is observed to be more effective, especially for finer mesh resolutions.


2000 ◽  
Vol 122 (3) ◽  
pp. 485-492 ◽  
Author(s):  
Dennis N. Assanis ◽  
Sang Jin Hong ◽  
Akihiro Nishimura ◽  
George Papageorgakis ◽  
Bruno Vanzieleghem

The Low Pressure spray Breakup (LPB) model of Papageorgakis and Assanis has been implemented in the multi-dimensional code KIVA-3V as an alternative to the standard Taylor Analogy Breakup (TAB) model. Comparison of spray predictions with measurements shows that the LPB model, in conjunction with the standard k-ε turbulence model, has the potential for simulating the evolution of hollow cone sprays with acceptable fidelity, both from qualitative and quantitative standpoints. After validating the LPB model, illustrative studies of mixture stratification are conducted for a Direct Injection Gasoline (DIG) combustion chamber resembling the Mitsubishi design. The effects of reverse tumble strength and injection timing on mixture quality in the vicinity of the spark plug are explored. Overall, the study demonstrates how the KIVA-3V code with the LPB model can contribute to the optimization and control of mixing in DIG engines. [S0742-4795(00)00303-3]


2020 ◽  
pp. 146808742097389
Author(s):  
Fahad M Alzahrani ◽  
Mohammad Fatouraie ◽  
Volker Sick

Unevaporated fuel films forming on the fuel injector tip of gasoline direct-injection engines burn in a diffusion flame at the time of spark, producing particulates and at some operating conditions, these films have been identified as the dominating source of particulate emissions. This work developed an analytical model for liquid film evaporation on the injector tip, that is, injector tip drying, for the mitigation of injector tip wetting and the resulting particulate emissions. The model explains theoretically how fuel films on the injector tip evaporate with time from the end of injection to the spark. The model takes into consideration engine operating conditions, including engine load and speed, tip and fuel temperatures, gas temperature and pressure, and fuel properties. The model explains the observed trends in particulate number (PN) emissions due to injector tip wetting. Engine experiments were used to validate the model by correlating the predicted film mass at the time of spark to measurements of PN emissions at different conditions. A tip drying time constant was also defined and was found to correlate well with the measured PN for all conditions tested. This time constant is a deterministic factor for mitigating tip wetting. In general, the results indicate that the liquid film evaporation on the injector tip follows a first order, asymptotic behavior. Furthermore, the tip drying physics causes the observed increasing and decreasing non-linear trends in PN emissions with the engine load and the available time for tip drying, respectively. Additionally, the liquid film evaporation on the injector tip is highly sensitive to most of the injector initial and boundary conditions, including the initial film mass after the end of injection, the wetted surface area, the available time for tip drying and the injector tip temperature. The initial film temperature has the least effect on film mass evaporation.


2020 ◽  
pp. 146808742091605 ◽  
Author(s):  
M Medina ◽  
FM Alzahrani ◽  
M Fatouraie ◽  
MS Wooldridge ◽  
V Sick

Gasoline fuel deposited on the fuel injector tip has been identified as a significant source of particulate emissions at some operating conditions of gasoline direct-injection engines. This work proposes simplified conceptual understanding for mechanisms controlling injector tip wetting and tip drying in gasoline direct-injection engines. The objective of the work was to identify which physical mechanisms of tip wetting and drying were most important for the operating conditions and hardware considered and to relate the mechanisms to measurements of particulate number emissions. Trends for each of the physical processes were evaluated as a function of engine operating conditions such as engine speed, start of injection timing, engine load, fuel rail pressure, and coolant temperature. The effects of fuel injector geometries on the tip wetting and drying mechanisms were also considered. Several mechanisms of injector tip wetting were represented with the conceptual understanding including wide plume wetting, vortex droplet wetting, fuel dribble wetting, and fuel condensation wetting. The main tip drying mechanism considered was single-phase evaporation. Using the conceptual understanding for tip wetting and drying mechanisms that were created in this work, the effects of engine operating conditions and fuel injector geometries on the mechanisms were compared with experimental results for particulate number. The results indicate that measured particulate number was increased by increasing injected fuel mass. Increasing injected fuel mass was suspected to increase tip wetting via wide plume wetting and vortex droplet wetting mechanisms. Particulate number was also observed to increase with hole length. Longer hole length was suspected to result in higher tip wetting via vortex droplet and fuel dribble wetting mechanisms. Longer timescale was found to decrease particulate number emissions. Lower speeds and early injection timings increased the timescale. Similarly, higher coolant temperature decreased particulate number. The coolant temperature influenced tip temperature resulting in higher tip drying.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2099
Author(s):  
Jian Gao ◽  
Anren Yao ◽  
Yeyi Zhang ◽  
Guofan Qu ◽  
Chunde Yao ◽  
...  

The super-knock poses new challenges for further increasing the power density of spark ignition (SI) engines. The critical factors and mechanism connecting regarding the occurrence of super-knock are still unclear. Misfire is a common phenomenon in SI engines that the mixture in cylinder is not ignited normally, which is often caused by spark plug failure. However, the effect of misfire on engine combustion has not been paid enough attention to, particularly regarding connection to super-knock. The paper presents the results of experimental investigation into the relationship between super-knock and misfires at low speed and full load conditions. In this work, a boosted gasoline direct injection (GDI) engine with an exhaust manifold integrated in the cylinder head was employed. Four piezoelectric pressure transducers were used to acquire the data of a pressure trace in cylinder. The spark plugs of four cylinders were controlled manually, of which the ignition system could be cut off as demanded. In particular, a piezoelectric pressure transducer was installed at the exhaust pipe before the turbocharger to capture the pressure traces in the exhaust pipe. The results illustrated that misfires in one cylinder would cause super-knock in the other cylinders as well as the cylinder of itself. After one cylinder misfired, the unburned mixture would burn in the exhaust pipe to produce oscillating waves. The abnormal pressure fluctuation in the exhaust pipe was strongly correlated with the occurrence of super-knock. The sharper the pressure fluctuation, the greater the intensity of knock in the power cylinder. The cylinder whose exhaust valve overlapped with the exhaust valve of the misfired cylinder was prone to super-knock.


2021 ◽  
pp. 146808742110012
Author(s):  
Nicola Giramondi ◽  
Anders Jäger ◽  
Daniel Norling ◽  
Anders Christiansen Erlandsson

Thanks to its properties and production pathways, ethanol represents a valuable alternative to fossil fuels, with potential benefits in terms of CO2, NOx, and soot emission reduction. The resistance to autoignition of ethanol necessitates an ignition trigger in compression-ignition engines for heavy-duty applications, which in the current study is a diesel pilot injection. The simultaneous direct injection of pure ethanol as main fuel and diesel as pilot fuel through separate injectors is experimentally investigated in a heavy-duty single cylinder engine at a low and a high load point. The influence of the nozzle hole number and size of the diesel pilot injector on ethanol combustion and engine performance is evaluated based on an injection timing sweep using three diesel injector configurations. The tested configurations have the same geometric total nozzle area for one, two and four diesel sprays. The relative amount of ethanol injected is swept between 78 – 89% and 91 – 98% on an energy basis at low and high load, respectively. The results show that mixing-controlled combustion of ethanol is achieved with all tested diesel injector configurations and that the maximum combustion efficiency and variability levels are in line with conventional diesel combustion. The one-spray diesel injector is the most robust trigger for ethanol ignition, as it allows to limit combustion variability and to achieve higher combustion efficiencies compared to the other diesel injector configurations. However, the two- and four-spray diesel injectors lead to higher indicated efficiency levels. The observed difference in the ethanol ignition dynamics is evaluated and compared to conventional diesel combustion. The study broadens the knowledge on ethanol mixing-controlled combustion in heavy-duty engines at various operating conditions, providing the insight necessary for the optimization of the ethanol-diesel dual-injection system.


Author(s):  
Dmitrii Mamaikin ◽  
Tobias Knorsch ◽  
Philipp Rogler ◽  
Philippe Leick ◽  
Michael Wensing

Gasoline Direct Injection (GDI) systems have become a rapidly developing technology taking up a considerableand rapidly growing share in the Gasoline Engine market due to the thermodynamic advantages of direct injection. The process of spray formation and propagation from a fuel injector is very crucial in optimizing the air-fuel mixture of DI engines. Previous studies have shown that the presence of some cavitation in high-pressure fuel nozzles can lead to better atomization of the fluid. However, under some very specific circumstances, high levels of cavitation can also delay the atomization process; spray stabilization due to hydraulic flip is the most well-known example. Therefore, a better understanding of cavitation behavior is of vital importance for further optimization of next generation fuel injectors.In contrast to the abundance of investigations conducted on the inner flow and cavitation patterns of diesel injectors, corresponding in-depth research on the inner flow of gasoline direct-injection nozzles is still relatively scarce. In this study, the results of an experiment performed on real-size GDI injector nozzles made of acrylic glass are presented. The inner flow of the nozzle is visualized using a high-power pulsed laser, a long-distance microscope and a high- speed camera. The ambiguity of dark areas on the images, which may represent cavitation regions as well as ambient air drawn into the nozzle holes, is resolved by injecting the fuel both into a fuel or gas filled environment. In addition, the influence of backpressure on the transient flow characteristics of the internal flow is investigated. In good agreement with observations made in previous studies, higher backpressure levels decrease the amount of cavitation inside the nozzles. Due to the high temporal and spatial resolution of the experiment, the transient cavitation behavior during the opening, quasi-steady and closing phases of the injector needle motion can be analyzed. For example, it is found that cavitation patterns oscillate with a characteristic frequency that depends on the backpressure. The link between cavitation and air drawn into the nozzle at the beginning of injection is alsorevealed.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4639


Sign in / Sign up

Export Citation Format

Share Document