Modeling and Analysis of Gear-Shifting Process of Motor-Transmission Coupled Drive System

Author(s):  
Hongxu Chen ◽  
Xiaoxiao Cheng ◽  
Guangyu Tian

Motor-transmission coupled drive system is attractive for battery and hybrid electric vehicles. In such a system, the motor rotor is directly connected to the transmission input shaft and the active-synchronization technique is implemented to assist the speed synchronization; therefore, the gear-shifting characteristics are different from those of traditional manual and automated mechanical transmissions. In this work, we present a methodology for modeling the gear-shifting process and analyzing its characteristics in a motor-transmission coupled drive system. We treat the engaging of sleeve and desired clutch gear as a two-phase process—sleeve first interacting with synchro ring and then with clutch gear, respectively, and investigate all possible interaction ways in each phase. The movement of each part is governed by multibody dynamics, and the speed jumps caused by shifting impacts are described using the Poisson coefficient of restitution. We then develop a hybrid automaton (HA) model to couple the continuous-time evolutions and the discrete transitions of state variables, which cover all interaction ways of sleeve, synchro ring, and clutch gear. Based on this model, we carry out simulations in matlab to analyze the effects of two control parameters—the relative rotational speed of sleeve and desired clutch gear, and the shifting force—on shifting performance. Simulation and bench test results show that the optimal control parameters are located in the domain where the relative rotational speed is negative with small absolute value, which means the sleeve will not be locked out by synchro ring and can engage with the desired clutch gear smoothly.

Robotica ◽  
2007 ◽  
Vol 25 (4) ◽  
pp. 467-477 ◽  
Author(s):  
J. Lin ◽  
Z.-Z. Huang

SUMMARYThis research focuses on the issue of dynamic modeling and controlling a robotic manipulator attached to a compliant base. Such a system is known under the name macro–micro system, characterized by the number of control actuators being less than the number of state variables. The equations of motion for a two-link planar elbow arm mounted on an oscillatory base has been presented in this investigation. In order to study the sensitivity of tuning the PID parameters to achieve the desired performance, the Grey relational analysis has first been proposed. Therefore, the aim of this work is to apply Grey theory to optimize parameters for partial states feedback of a PID controller for such a structure. The experimental results of the proposed methodology also show that it is technically and economically feasible to develop a low-cost, reliable, automatic, less time-consuming controller for robotics mounted on oscillatory bases.


Author(s):  
Naoki Matsushita ◽  
Akinori Furukawa ◽  
Kusuo Okuma ◽  
Satoshi Watanabe

A tandem arrangement of double rotating cascades and single diffuser cascade, proposed as a centrifugal pump with high performance in air-water two-phase flow condition, yields lower head due to the smallness of the impeller outlet in comparison with a impeller with large outlet diameter and no diffuser. Influences of impeller diameter change and installation of diffuser blades on two-phase flow performance were experimentally investigated under the case of the same volute casing. As the result, the similarity law of the diameter of impeller having the similar blade geometry and the rotational speed is satisfied even in two-phase flow condition. Comparing pump performances between a large impeller without diffuser blades and a small one with diffuser blades, higher two-phase flow performance is obtained by controlling the rotational speed of a small impeller with diffuser blades in the range of small water flow rates, while a large impeller with no diffuser gives high performance in the range of high water flow rate and small air flow rate.


2012 ◽  
Vol 472-475 ◽  
pp. 2760-2765
Author(s):  
Hao Bin Jiang ◽  
Ying Jun Du ◽  
Shen Chen Ye

The design scheme of a new type strut was put forward, whose stiffness characteristics can undertake linkage control. The structure and basic principle of this new suspension component were introduced. According to fluid mechanics and thermodynamics, a mathematical model for the stroke dependent stiffness characteristics of the strut was established, and the stiffness characteristics were analyzed by using software SIMULINK. Then the stiffness performance bench test of the strut specimen was carried out for verification. Results show that the test results agree well with the simulation results. It is verified that the established mathematical model is correct and the stiffness of this strut shows nonlinear changes vary with the displacement of piston. When the suspension is largely impacted, the stiffness of this strut increases quickly which could restrain the wheel bouncing, body roll and vertical vibration.


Author(s):  
Xingyang Lu ◽  
Tongli Lu ◽  
Benben Chai

The backlash between engaging components in a driveline is inevitable and contributes to the nonlinearity of the driveline. The existing motor controllers of an electric vehicle usually ignore the backlash, which often brings impacts and vibration. This paper proposes an active driveline vibration controller for electric vehicles. A nonlinear driveline model considering backlash and wheel slip ratio is established in MATLAB/Simulink, and the results of bench test proved that the model could effectively reflect the transient dynamics of the electric driveline. Based on this model, a dual extended Kalman filter observer is designed to estimate both the system state variables and vehicle mass, which are essential information for the controller design. Then, a mode-switch model predictive controller based on two linearized models is proposed to alleviate the impacts and vibration caused by the transient change of motor torque. The proposed controller would identify whether the driveline is operating in “contact mode” or “backlash mode” and thus generates an optimal motor torque by solving a Quadratic Programing. Note that the control targets and model structures in two modes are different. Furthermore, a “pre-contact” method is proposed as an additional part to handle the condition when motor command torque is zero. Simulation results demonstrate that the proposed controller can effectively alleviate the impacts and vibration in the electric driveline while keeping the torque delay negligible. Moreover, the robustness of the proposed controller against estimation errors and system noises are discussed.


Sign in / Sign up

Export Citation Format

Share Document