An Experimental and Numerical Study of Hybrid III Dummy Response to Simulated Underbody Blast Impacts

2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Karthik Somasundaram ◽  
Anil Kalra ◽  
Don Sherman ◽  
Paul Begeman ◽  
King H. Yang ◽  
...  

Anthropometric test devices (ATDs) such as the Hybrid III dummy have been widely used in automotive crash tests to evaluate the risks of injury at different body regions. In recent years, researchers have started using automotive ATDs to study the high-speed vertical loading response caused by underbody blast impacts. This study analyzed the Hybrid III dummy responses to short-duration, large magnitude vertical accelerations in a laboratory setup. Two unique test conditions were investigated using a horizontal sled system to simulate underbody blast loading conditions. The biomechanical responses in terms of pelvis acceleration, chest acceleration, lumbar spine force, head accelerations, and neck forces were measured. Subsequently, a series of finite element (FE) analyses were performed to simulate the physical tests. The correlation between the Hybrid III test and numerical model was evaluated using the correlation and analysis (cora) version 3.6.1. The score for the Wayne State University (WSU) FE model was 0.878 and 0.790 for loading conditions 1 and 2, respectively, in which 1.0 indicated a perfect correlation between the experiment and the simulated response. With repetitive vertical impacts, the Hybrid III dummy pelvis showed a significant increase in peak acceleration accompanied by a rupture of the pelvis foam and flesh. The revised WSU Hybrid III model indicated high stress concentrations at the same location, providing a possible explanation for the material failure in actual Hybrid III tests.

Author(s):  
Tibor Kiss ◽  
Wing-Fai Ng ◽  
Larry D. Mitchell

Abstract A high-speed rotor wheel for a wind-tunnel experiment has been designed. The rotor wheel was similar to one in an axial turbine, except that slender bars replaced the blades. The main parameters of the rotor wheel were an outer diameter of 10“, a maximum rotational speed of 24,000 RPM and a maximum transferred torque of 64 lb-ft. Due to the working environment, the rotor had to be designed with high safety margins. The coupling of the rotor wheel with the shaft was found to be the most critical issue, because of the high stress concentration factors associated with the conventional coupling methods. The efforts to reduce the stress concentrations resulted in an advanced coupling design which is the main subject of the present paper. This new design was a special key coupling in which six dowel pins were used for keys. The key slots, now pin-grooves, were placed in bosses on the inner surface of the hub. The hub of the rotor wheel was relatively long, which allowed for applying the coupling near the end faces of the hub, that is, away from the highly loaded centerplane. The long hub resulted in low radial expansion in the coupling region. Therefore, solid contact between the shaft and the hub could be maintained for all working conditions. To develop and verify the design ideas, stress and deformation analyses were carried out using quasi-two-dimensional finite element models. An overall safety factor of 3.7 resulted. The rotor has been built and successfully accelerated over the design speed in a spin test pit.


2011 ◽  
Vol 368-373 ◽  
pp. 2575-2580 ◽  
Author(s):  
Long Long Fu ◽  
Quan Mei Gong ◽  
Yang Wang

To investigate the dynamic transfer characteristics of low geosynthetic-reinforced embankments supported by CFG piles under high-speed train load, a numerical study has been conducted through dynamic finite element method on basis of the dynamic field test on a cross-section of Beijing-Shanghai high-speed railway. The comparative analysis on results of numerical study and field test indicated the distribution characteristics of vertical dynamic stress induced by high-speed train load in subgrade soil under railway line. The numerical results also suggested a high stress area in subgrade where vertical dynamic stress is over 1kPa. Conclusions of this work can provide reference for both design and estimation of long-term settlement of low geosynthetic-reinforced embankments supported by CFG piles for high-speed railway.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
K. Ott ◽  
D. Drewry ◽  
M. Luongo ◽  
J. Andrist ◽  
R. Armiger ◽  
...  

Abstract Impact biomechanics research in occupant safety predominantly focuses on the effects of loads applied to human subjects during automotive collisions. Characterization of the biomechanical response under such loading conditions is an active and important area of investigation. However, critical knowledge gaps remain in our understanding of human biomechanical response and injury tolerance under vertically accelerated loading conditions experienced due to underbody blast (UBB) events. This knowledge gap is reflected in anthropomorphic test devices (ATDs) used to assess occupant safety. Experiments are needed to characterize biomechanical response under UBB relevant loading conditions. Matched pair experiments in which an existing ATD is evaluated in the same conditions as a post mortem human subject (PMHS) may be utilized to evaluate biofidelity and injury prediction capabilities, as well as ATD durability, under vertical loading. To characterize whole body response in the vertical direction, six whole body PMHS tests were completed under two vertical loading conditions. A series of 50th percentile hybrid III ATD tests were completed under the same conditions. Ability of the hybrid III to represent the PMHS response was evaluated using a standard evaluation metric. Tibial accelerations were comparable in both response shape and magnitude, while other sensor locations had large variations in response. Posttest inspection of the hybrid III revealed damage to the pelvis foam and skin, which resulted in large variations in pelvis response. This work provides an initial characterization of the response of the seated hybrid III ATD and PMHS under high rate vertical accelerative loading.


1978 ◽  
Vol 51 (2) ◽  
pp. 225-252 ◽  
Author(s):  
Thor L. Smith

Abstract The strength and extensibility of an elastomer depend on its overall viscoelastic properties, as reflected in the time and temperature dependence of stress-strain curves, and also on those discrete processes, including crack formation and growth, that culminate in high-speed crack propagation. The discrete processes determine the lifetime of a specimen; the viscoelastic characteristics affect the dependence of stress on deformation. The interplay between these effects causes strength and extensibility to depend strongly on test conditions. An elastomeric network composed solely of highly mobile chains is very weak indeed and fractures at a low elongation. This characteristic differs diametrically from that expected of an idealized network of mobile chains. If such a network were stretched, stress concentrations and unbalanced forces at the molecular level, which can result from short chains, entanglements, and network imperfections, would be vitiated rapidly by stress-biased segmental diffusion, especially at the elevated temperature. Therefore the network should be able to withstand a high elongation and thus a high stress. Hence, the low strength always exhibited by a single-phase non-crystallizable elastomer at elevated temperatures is incompatible with the characteristics ascribed to a network in the molecular theory of rubber elasticity. A network of mobile chains is weak for two reasons. First, microcracks develop readily in a stretched specimen. Their formation is usually attributed to stress concentrations near heterogeneties either within or on the surface of a specimen. Second, and most importantly, a microcrack—once it forms—encounters little resistance to growth because the chains are highly mobile. High strength results not because microcracks do not develop but because their growth is impeded. Unless processes that impede growth come into play, a microcrack enlarges rapidly and catastrophic propagation soon follows. When chain mobility is relatively low, the dissipation of energy through viscoelastic processes near the tip of a slowly growing crack retards its progressive growth. But this source of strength is rather ineffective except within narrow ranges of temperature and extension rate, or time scale more generally. Thus, high strength and toughness result from other mechanisms that impede crack growth. Effective mechanisms usually come into play and impart toughness if colloidal particulate fillers or plastic domains are present, except at low concentration.


2021 ◽  
Author(s):  
Mahdi Takaffoli

Solid particle erosion occurs when small high speed particles impact surfaces. It can be either destructive such as in the erosion of oil pipelines by corrosion byproducts, or constructive such as in abrasive jet machining processes. Two dimensional finite element (FE) models of single rhomboid particles impact on a copper target were developed using two different techniques to deal with the problem of element distortion: (i) element deletion, and (ii) remeshing. It was found that the chip formation and the material pile-up, two phenomena that cannot be simulated using a previously developed rigid-plastic model, could be simulated using the FE models, resulting in a good agreement with experiments performed using a gas gun. However, remeshing in conjunction with a failure model caused numerical instabilities. The element deletion approach also induced errors in mass loss due to the removal of distorted elements. To address the limitations of the FE approach, smoothed particle hydrodynamics (SPH) which can better accommodate large deformations, was used in the simulation of the impact of single rhomboid particles on an aluminum alloy target. With appropriate constitutive and failure parameters, SPH was demonstrated to be suitable for simulating all of the relevant damage phenomena observed during impact experiments. A new methodology was developed for generating realistic three dimensional particle geometries based on measurements of the size and shape parameter distributions for a sample of 150 µm nominal diameter angular aluminum oxide powder. The FE models of these generated particles were implemented in a SPH/FE model to simulate non-overlapping particle impacts. It was shown that the simulated particles produced distributions of crater and crater lip dimensions that agreed well with those measured from particle blasting experiments. Finally, a numerical model for simulating overlapping impacts of angular particles was developed and compared to experimental multi-particle erosion tests, with good agreement. An investigation of the simulated trajectory of the impacting particles revealed various erosion mechanisms such as the micromachining of chips, the ploughing of craters, and the formation, forging and knocking off crater lips which were consistent with previously noted ductile solid particle erosion mechanisms in the literature.


2015 ◽  
Author(s):  
Feng Zhu ◽  
Liqiang Dong ◽  
Xin Jin ◽  
Binhui Jiang ◽  
Anil Kalra ◽  
...  

2021 ◽  
Author(s):  
Mahdi Takaffoli

Solid particle erosion occurs when small high speed particles impact surfaces. It can be either destructive such as in the erosion of oil pipelines by corrosion byproducts, or constructive such as in abrasive jet machining processes. Two dimensional finite element (FE) models of single rhomboid particles impact on a copper target were developed using two different techniques to deal with the problem of element distortion: (i) element deletion, and (ii) remeshing. It was found that the chip formation and the material pile-up, two phenomena that cannot be simulated using a previously developed rigid-plastic model, could be simulated using the FE models, resulting in a good agreement with experiments performed using a gas gun. However, remeshing in conjunction with a failure model caused numerical instabilities. The element deletion approach also induced errors in mass loss due to the removal of distorted elements. To address the limitations of the FE approach, smoothed particle hydrodynamics (SPH) which can better accommodate large deformations, was used in the simulation of the impact of single rhomboid particles on an aluminum alloy target. With appropriate constitutive and failure parameters, SPH was demonstrated to be suitable for simulating all of the relevant damage phenomena observed during impact experiments. A new methodology was developed for generating realistic three dimensional particle geometries based on measurements of the size and shape parameter distributions for a sample of 150 µm nominal diameter angular aluminum oxide powder. The FE models of these generated particles were implemented in a SPH/FE model to simulate non-overlapping particle impacts. It was shown that the simulated particles produced distributions of crater and crater lip dimensions that agreed well with those measured from particle blasting experiments. Finally, a numerical model for simulating overlapping impacts of angular particles was developed and compared to experimental multi-particle erosion tests, with good agreement. An investigation of the simulated trajectory of the impacting particles revealed various erosion mechanisms such as the micromachining of chips, the ploughing of craters, and the formation, forging and knocking off crater lips which were consistent with previously noted ductile solid particle erosion mechanisms in the literature.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Ann Marie Bailey ◽  
John J. Christopher ◽  
Robert S. Salzar ◽  
Frederick Brozoski

Response of the human body to high-rate vertical loading, such as military vehicle underbody blast (UBB), is not well understood because of the chaotic nature of such events. The purpose of this research was to compare the response of postmortem human surrogates (PMHS) and the Hybrid-III anthropomorphic test device (ATD) to simulated UBB loading ranging from 100 to 860 g seat and floor acceleration. Data from 13 whole body PMHS tests were used to create response corridors for vertical loading conditions for the pelvis, T1, head, femur, and tibia; these responses were compared to Hybrid-III responses under matched loading conditions.


2014 ◽  
Author(s):  
Mikhail Sokovikov ◽  
Vasiliy Chudinov ◽  
Dmitry Bilalov ◽  
Vladimir Oborin ◽  
Sergey Uvarov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document