Isolated and Coupled Effects of Rotating and Buoyancy Number on Heat Transfer and Pressure Drop in a Rotating Two-Pass Parallelogram Channel With Transverse Ribs

2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Tong-Miin Liou ◽  
Shyy Woei Chang ◽  
Yi-An Lan ◽  
Shu-Po Chan

Detailed Nusselt number (Nu) distributions over the leading (LE) and trailing (TE) endwalls and the pressure drop coefficients (f) of a rotating transverse-ribbed two-pass parallelogram channel were measured. The impacts of Reynolds (Re), rotation (Ro), and buoyancy (Bu) numbers upon local and regionally averaged Nu over the endwall of two ribbed legs and the turn are explored for Re = 5000–20,000, Ro = 0–0.3, and Bu = 0.0015–0.122. The present work aims to study the combined buoyancy and Coriolis effects on thermal performances as the first attempt. A set of selected experimental data illustrates the isolated and interdependent Ro and Bu influences upon Nu with the impacts of Re and Ro on f disclosed. Moreover, thermal performance factors (TPF) for the tested channel are evaluated and compared with those collected from the channels with different cross-sectional shapes and endwall configurations to enlighten the relative heat transfer efficiency under rotating condition. Empirical Nu and f correlations are acquired to govern the entire Nu and f data generated. These correlations allow one to evaluate both isolated and combined Re, Ro and/or Bu impacts upon the thermal performances of the present rotating channel for internal cooling of gas turbine blades.

Author(s):  
Tong-Miin Liou ◽  
Shyy-Woei Chang ◽  
Yi-An Lan ◽  
Shu-Po Chan

Detailed Nusselt number (Nu) distributions over the leading and trailing endwalls and the pressure drop coefficients (f) of a rotating transverse-ribbed two-pass parallelogram channel were measured. The impacts of Reynolds (Re), rotation (Ro) and buoyancy (Bu) numbers upon local and regionally averaged Nu over the endwall of two ribbed legs and the turn are explored for Re = 5,000–20,000, Ro = 0–0.3, and Bu = 0.0015–0.122. It is aimed to study the combined buoyancy and Coriolis effects on thermal performances as the first attempt. A set of selective experimental data illustrates the isolated and interdependent Ro and Bu influences upon Nu with the impacts of Re and Ro on f disclosed. Moreover, thermal performance factors (TPF) for the channel tested are evaluated and compared with those collected from the channels with different cross-sectional shapes and endwall configurations to enlighten the relative heat transfer efficiency under rotating condition. Empirical Nu and f correlations are acquired to govern the entire Nu and f data generated. These correlations allow one to evaluate both isolated and combined Re, Ro and/or Bu impacts upon the thermal performances of the present rotating channel for internal cooling of gas turbine blades.


Author(s):  
Shinjan Ghosh ◽  
Jayanta S. Kapat

Abstract Gas Turbine blade cooling is an important topic of research, as a high turbine inlet temperature (TIT) essentially means an increase in efficiency of gas turbine cycles. Internal cooling channels in gas turbine blades are key to the cooling and prevention of thermal failure of the material. Serpentine channels are a common feature in internal blade cooling. Optimization methods are often employed in the design of blade internal cooling channels to improve heat-transfer and reduce pressure drop. Topology optimization uses a variable porosity approach to manipulate flow geometries by adding or removing material. Such a method has been employed in the current work to modify the geometric configuration of a serpentine channel to improve total heat transferred and reduce the pressure drop. An in-house OpenFOAM solver has been used to create non-traditional geometries from two generic designs. Geometry-1 is a 2-D serpentine passage with an inlet and 4 bleeding holes as outlets for ejection into the trailing edge. Geometry-2 is a 3-D serpentine passage with an aspect ratio of 3:1 and consists of two 180-degree bends. The inlet velocity for both the geometries was used as 20 m/s. The governing equations employ a “Brinkman porosity parameter” to account for the porous cells in the flow domain. Results have shown a change in shape of the channel walls to enhance heat-transfer in the passage. Additive manufacturing can be employed to make such unconventional shapes.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Abdel Rahman Salem ◽  
Farah Nazifa Nourin ◽  
Mohammed Abousabae ◽  
Ryoichi S. Amano

Abstract Internal cooling of gas turbine blades is performed with the combination of impingement cooling and serpentine channels. Besides gas turbine blades, the other turbine components such as turbine guide vanes, rotor disks, and combustor wall can be cooled using jet impingement cooling. This study is focused on jet impingement cooling, in order to optimize the coolant flow, and provide the maximum amount of cooling using the minimum amount of coolant. The study compares between different nozzle configurations (in-line and staggered), two different Reynold's numbers (1500 and 2000), and different stand-off distances (Z/D) both experimentally and numerically. The Z/D considered are 3, 5, and 8. In jet impingement cooling, the jet of fluid strikes perpendicular to the target surface to be cooled with high velocity to dissipate the heat. The target surface is heated up by a direct current (DC) power source. The experimental results are obtained by means of thermal image processing of the captured infra-red (IR) thermal images of the target surface. Computational fluid dynamics (CFD) analysis were employed to predict the complex heat transfer and flow phenomena, primarily the line-averaged and area-averaged Nusselt number and the cross-flow effects. In the current investigation, the flow is confined along with the nozzle plate and two parallel surfaces forming a bi-directional channel (bi-directional exit). The results show a comparison between heat transfer enhancement with in-line and staggered nozzle arrays. It is observed that the peaks of the line-averaged Nusselt number (Nu) become less as the stand-off distance (Z/D) increases. It is also observed that the fluctuations in the stagnation heat transfer are caused by the impingement of the primary vortices originating from the jet nozzle exit.


Author(s):  
Yaping Ju ◽  
Yi Feng ◽  
Chuhua Zhang

Abstract Reynolds averaged Navier-Stokes model-based conjugate heat transfer method is popularly used in simulations and designs of internally cooled gas turbine blades. One of the important factors influencing its prediction accuracy is the choice of turbulence models for different fluid regions because the blade passage flow and internal cooling have considerably different flow features. However, most studies adopted the same turbulence models in passage flow and internal cooling. Another important issue is the comprehensive evaluation of the losses caused by flow and heat transfer for both fluid and solid regions. In this study, a RANS-based CHT solver for subsonic/transonic flows was developed based on OpenFOAM and validated and used to explore suitable RANS turbulence model combinations for internally cooled gas turbine blades. Entropy generation, able to weigh the losses caused by flow friction and heat transfer, was used in the analyses of two internally cooled vanes to reveal the loss mechanisms. Findings indicate that the combination of the k-? SST-?-Re? transition model for passage flow and the standard k-e model for internal cooling agreed best with measurement data. The relative error of vane dimensionless temperature was less than 3%. The variations of entropy generation with different internal cooling inlet velocities and temperatures indicate that reducing entropy generation was contradictory with enhancing heat transfer performance. This study, providing a reliable computing tool and a comprehensive performance parameter, has an important application value for the design of internally cooled gas turbine blades.


Author(s):  
Del Segura ◽  
Sumanta Acharya

Heat transfer results for a given slot shaped channel with a 3:1 aspect ratio are presented using various methods to enhance swirl in the channel including helical shaped-trip-strips and swirl-jets issuing from the side walls. Four different configurations of the swirl jets and one configuration of the helical trip strips were studied. The Reynolds numbers investigated range from 10,000 to 50,000 and are based on the mean velocity of the fluid at the channel inlet, or when swirl-jets are used, the equivalent mass flow rates at the exit of the main channel. Independently these heat transfer enhancement strategies have proven to be effective in either round channels, in the case of swirl jets and helical protrusions, or rectangular channels, in the case of trip strips. A transient technique combined with Duhamel’s superposition theorem was used to obtain the heat transfer coefficient distributions. Narrow-band liquid crystals were used to map the transient surface temperatures and were combined with thermocouples that measured the bulk-air temperatures along the flow path in the main channel. The results for the tests reported in this paper show mean heat transfer enhancement values (Nu/Nuo) greater than 4.5 and low normalized friction factors. Thermal performance factors ranged from 1.1–3.3 for the various configurations studied. These results show significant improvements over other types of heat transfer enhancement methods currently used in the mid-span section of turbine blades.


Author(s):  
S. W. Chang ◽  
T.-M. Liou ◽  
T.-H. Lee

This experimental study examines the pressure drop coefficients (f) and the detailed Nusselt numbers (Nu) distributions over two opposite leading and trailing walls roughened by 45° ribs for a rotating parallelogram channel with radially outward flow. For the first time the isolated effects of Reynolds (Re), rotation (Ro) and buoyancy (Bu) numbers on local and area averaged Nusselt numbers (Nu and Nu) measured from the infrared thermography method were successfully examined at the parametric conditions of 5000≤Re≤15000, 0≤Ro≤0.3 and 0.001≤Bu≤0.23 for the single-pass parallelogram channel. A set of selected heat transfer data illustrates the Coriolis and rotating-buoyancy effects on the detailed Nu distributions and the area-averaged heat transfer performances of the rotating parallelogram channel. With the consideration of the f data generated at the isothermal conditions, the thermal performance factors (η) for this radially rotating channel were evaluated. The Nusselt numbers obtained from the leading and trailing walls of the rotating test channel fall in the respective ranges of 0.78–1.34 and 1.09–1.38 times of the stationary levels; while the η factors are in the range of 0.979–1.575 for the present test conditions.


Author(s):  
Fuguo Zhou ◽  
Sumanta Acharya

Heat exchange passages usually use internal fins to enhance heat transfer. These fins have ranged from simple ribs or turbulators to complex helical inserts. Applications of interest range from traditional heat exchangers to internal cooling of turbine blades. In the present paper, a novel fin design that combines the benefits of swirl, impingement and high heat transfer surface area is presented. Measurements of the internal heat transfer coefficients are provided using a liquid crystal technique. Pressure drop along the passage are also measured, therefore friction factors and thermal performance factors are presented. The experiments cover Reynolds number from 10,000 to 40,000 based on the hydraulic diameter of the main channel of the test section. Two models are tested, which have fins oriented at 30 degree and 45 degree to the flow direction, respectively. The results demonstrate that these novel designs produce overall heat transfer ratios greater than 3 compared to the smooth passage.


Author(s):  
Fabio Pagnacco ◽  
Luca Furlani ◽  
Alessandro Armellini ◽  
Luca Casarsa ◽  
Anthony Davis

The present contribution describes the design and realization of a rotating test rig for heat transfer measurements on internal cooling passages of gas turbine blades. The aim is to study the effects of Coriolis and buoyancy forces on the heat transfer distribution inside realistic cooling schemes. Spatially resolved heat transfer data are obtained by means of transient thermochromic liquid crystals (TLC) technique. In order to replicate the same buoyancy effects induced by the Coriolis forces during rotation, the transient measurements are performed with a cold temperature step on the coolant flow. New solutions are adopted to generate the cold temperature step, acquire the experimental data on board of the rotating test model and to control the experimental parameters during tests execution. The main components of the rig will be described in the paper, together with an overview of the data processing methodology that has been developed.


Author(s):  
Giovanni Delibra ◽  
Domenico Borello ◽  
Kemal Hanjalic ◽  
Franco Rispoli

We report on an LES (large-eddy-simulations) study of flow and heat transfer in a longitudinal periodic segment of a matrix of cylindrical rods in a staggered arrangement bounded by two parallel heated walls. The configuration replicates the set-up investigated experimentally by Ames et al. (ASME Turbo Expo, GT2007-27432) and mimics the situation encountered in internal cooling of gas-turbine blades. LES have been performed using the in-house finite-volume computational code T-FlowS. Considered are two Reynolds numbers, 10000 and 30000, based on the rod diameter and maximum velocity in the matrix. The unstructured grid contained around 5 and 15 million cells for the two Re numbers respectively. After validating the simulations with respect to the available experimental data, the paper discusses the characteristic vortex and plume structures, streamline and heatline patterns and their evolution along the pin matrix, around individual pins and at the pin-endwall junctions. It is concluded that the convection by organized vertical structures originated from vortex shedding govern the thermal field and play the key role in endwall heat transfer, exceeding by far the stochastic turbulent transport.


Sign in / Sign up

Export Citation Format

Share Document