Through-Flow Modeling of Axial Turbomachinery

Author(s):  
Robert P. Dring ◽  
H. David Joslyn

Through-flow analysis, which is at the heart of the aerodynamic design of turbomachinery, requires as aerodynamic input a row-by-row description of the airfoil loss, deviation, and blockage. Loss and deviation have been investigated extensively in both cascades and rotating rigs as well as in numerous two- and three-dimensional analytical studies. Blockage, however, has received far less attention. As defined herein, blockage is a measure of the departure of the flow field from the condition of axisymmetry which is assumed in the through-flow analysis. The fullspan blockage distributions calculated from measured single-stage rotor wake data were used to provide the input to the through-flow analysis, along with the measured fullspan distributions of loss and deviation. Measured and computed results are compared for the single-stage rotor operating with both thick and thin inlet hub and tip boundary layers. It is demonstrated that both the level and the spanwise and streamwise distributions of blockage have a strong impact on the computed rotor exit flow field.

1986 ◽  
Vol 108 (2) ◽  
pp. 246-253 ◽  
Author(s):  
R. P. Dring ◽  
H. D. Joslyn

Through-flow analysis, which is at the heart of the aerodynamic design of turbomachinery, requires as aerodynamic input a row-by-row description of the airfoil loss, deviation, and blockage. Loss and deviation have been investigated extensively in both cascades and rotating rigs as well as in numerous two- and three-dimensional analytical studies. Blockage, however, has received far less attention. As defined herein, blockage is a measure of the departure of the flow field from the condition of axisymmetry which is assumed in the through-flow analysis. The full-span blockage distributions calculated from measured single-stage rotor wake data were used to provide the input to the through-flow analysis, along with the measured full-span distributions of loss and deviation. Measured and computed results are compared for the single-stage rotor operating with both thick and thin inlet hub and tip boundary layers. It is demonstrated that both the level and the spanwise and streamwise distributions of blockage have a strong impact on the computed rotor exit flow field.


1992 ◽  
Author(s):  
William W. Copenhaver ◽  
Chunill Hah ◽  
Steven L. Puterbaugh

A detailed aerodynamic study of a transonic, high-through-flow, single stage compressor is presented. The compressor stage was comprised of a low-aspect-ratio rotor combined alternately with two different stator designs. Both experimental and numerical studies are conducted to understand the details of the complex flow field present in this stage. Aerodynamic measurements using high-frequency, Kulite pressure transducers and conventional probes are compared with results from a three-dimensional viscous flow analysis. A steady multiple blade row approach is used in the numerical technique to examine the detailed flow structure inside the rotor and the stator passages. The comparisons indicate that many flow field features are correctly captured by viscous flow analysis, and therefore unmeasured phenomena can be studied with some level of confidence.


Author(s):  
Hongwei Ma ◽  
Haokang Jiang

This paper reports an experimental investigation of the three-dimensional turbulent flow downstream of a single-stage axial compressor rotor. The flow fields were measured at two axial locations in the rotor-stator gap at different mass-flow conditions. Both hot-wire probe and fast-response pressure probe were employed to survey the flow structure. At the design condition, substantial flow blockage, turbulence, loss and aerodynamic noise mainly occur in the tip mid-passage, the rotor wake and at the hub corner of the suction surface. The radial component is the highest of the three turbulence intensities at 15% axial chord downstream of the trailing edge. With the flow downstream, the radial turbulence components decay fast. Interactions of the tip leakage vorticities and the rotor wake are found at 30% axial chord downstream of the trailing edge. With the mass-flow decrease, the turbulence intensities and shear stresses become stronger, while the radial components increase fast. The flow separation and tangential migration of the low-energy fluids at the tip corner of the suction surface play an important role in the tip flow field at a low mass-flow condition.


Author(s):  
Kurt Weber ◽  
Girish Modgil ◽  
Steve Gegg ◽  
Shyam Neerarambam ◽  
Moujin Zhang

The flow field in High-Work Single-Stage (HWSS) turbines differs from traditional turbine flow fields. Operating at increased pressure ratios, wakes and trailing edge shocks at the exit of the vane are more likely to cause a vibratory response in the rotating blade. This flow field can produce increased excitation at harmonics that correspond to the vane passing frequency and harmonics higher than the vane passing frequency. In this paper, blade vibratory stresses in a HWSS gas turbine stage are predicted using unsteady pressures from two Rolls-Royce in-house flow codes that employ different phase lagged unsteady approaches. Hydra uses a harmonic storage approach, and the Vane/Blade Interaction (VBI) code uses a direct storage approach. Harmonic storage reduces memory requirements considerably. The predicted stress for four modes at two engine speeds are presented and are compared with rig test strain gauge data to assess and validate the predictive capability of the codes for forced response. Strain gauge data showed the need to consider harmonics higher than the fundamental vane passing frequency for the max power shaft speed and operating at the conditions. Because of this, it was a good case for validation and for comparing the two codes. Overall, it was found that, stress predictions using the Hydra flow code compare better with data. To the best of the authors’ knowledge, this paper is a first in comparing two different phase lagged unsteady approaches, in the context of forced response, to engine rig data for a High-Work Single Stage turbine.


1990 ◽  
Author(s):  
A. Kirschner ◽  
H. Stoff

A cascade design-method is presented which complements the meridional through-flow design procedure of turbomachines. Starting from an axisymmetric flow field and the streamline geometry in the meridional plane this simple method produces a solution for the quasi three-dimensional flow field and the blade-element geometry on corresponding stream surfaces. In addition, it provides intra-blade data on loss and turning required for a consistent design and a convenient means of optimizing blade loading. The purpose of this paper is to describe the theoretical basis of the method and to illustrate its application in the design of transonic compressors.


2000 ◽  
Vol 122 (4) ◽  
pp. 683-688 ◽  
Author(s):  
H. Huitenga ◽  
N. K. Mitra

For the use as a startup device the characteristic of a hydrodynamic coupling has to be steep at the nominal high speed operation condition and flat in the range of lower speed ratios. The economical design of the runner requires that the mass and the volume of the coupling should be as small as possible. The flow field in a starting configuration is simulated and a detailed analysis of the three-dimensional flow field is performed to deduce constructional modifications which meet both requests. The analysis shows that several modifications on pump and turbine runner seem to be successful. The consequences of the variation of the runner geometries will be discussed in detail in Part II of this paper. [S0098-2202(00)02104-0]


Author(s):  
G Persico ◽  
P Gaetani ◽  
V Dossena ◽  
G D'Ippolito ◽  
C Osnaghi

The present article proposes a novel methodology to evaluate secondary flows generated by the annulus boundary layers in complex cascades. Unlike two-dimensional (2D) linear cascades, where the reference flow is commonly defined as that measured at midspan, the problem of the reference flow definition for annular or complex 3D linear cascades does not have a general solution up to the present time. The proposed approach supports secondary flow analysis whenever exit streamwise vorticity produced by inlet endwall boundary layers is of interest. The idea is to compute the reference flow by applying slip boundary conditions at the endwalls in a viscous 3D numerical simulation, in which uniform total pressure is prescribed at the inlet. Thus the reference flow keeps the 3D nature of the actual flow except for the contribution of the endwall boundary layer vorticity. The resulting secondary field is then derived by projecting the 3D flow field (obtained from both an experiment and a fully viscous simulation) along the local reference flow direction; this approach can be proficiently applied to any complex geometry. This method allows the representation of secondary velocity vectors with a better estimation of the vortex extension, since it offers the opportunity to visualize also the region of the vortices, which can be approximated as a potential type. Furthermore, a proficient evaluation of the secondary vorticity and deviation angle effectively induced by the annulus boundary layer is possible. The approach was preliminarily verified against experimental data in linear cascades characterized by cylindrical blades, not reported for the sake of brevity, showing a very good agreement with the standard methodology based only on the experimental midspan flow field. This article presents secondary flows obtained by the application of the proposed methodology on two annular cascades with cylindrical and 3D-designed blades, stressing the differences with other definitions. Both numerical and experimental results are considered.


Author(s):  
Daniele Infantino ◽  
Francesca Satta ◽  
Daniele Simoni ◽  
Marina Ubaldi ◽  
Pietro Zunino ◽  
...  

The present paper is the second part of a two-part paper focused on the design and the analysis of an optimized rotor blade for a geared open rotor engine. This part is focused on the experimental investigation of the three-dimensional unsteady flow field at the exit plane of a rotor row installed in a large scale single-stage low speed research turbine. The investigation is aimed at in depth characterizing the wake-boundary layer and the vortex-vortex interaction processes induced by the rotor-stator relative motion. Measurements have been carried out at a typical aeroengine cruise condition Reynolds number. The rotor blade aerodynamic loadings at different blade spans have been measured. A five-hole probe has been used to assess the row efficiency and detailed hot-wire phase-locked ensemble-averaged data have been analyzed to characterize the three-dimensional time-dependent flow field at the rotor exit plane. Results clearly highlight a significant distortion of the rotor blade wake and tip vortex during the migration of the high turbulence regions (wake and secondary flows) associated with the upstream stator. The unsteady interaction between the stator secondary flows and the rotor passage vortex provokes a time dependent movement of the low momentum area at the hub surface, sensibly modifying the penetration of the rotor secondary flows in an incoming stator wake passage period. The comparison of deterministic and random velocity fluctuations also allows the distinction between the structures generated by the stator and those due to the rotor.


Sign in / Sign up

Export Citation Format

Share Document