scholarly journals Heat Transfer Characteristics of Turbulent Flow in a Square Channel With Angled Discrete Ribs

Author(s):  
S. C. Lau ◽  
R. D. McMillin ◽  
J. C. Han

Experiments have been conducted to study the turbulent heat transfer and friction for fully developed flow of air in a square channel in which two opposite walls are roughened with 90° full ribs, parallel and crossed full ribs with angles-of-attack (α) of 60° and 45°, 90° discrete ribs, and parallel and crossed discrete ribs with = 60°, 45°, and 30°. The discrete ribs are staggered in alternate rows of three and two ribs. Results are obtained for a rib height-to-channel hydraulic diameter ratio of 0.0625, a rib pitch-to-height ratio of 10, and Reynolds numbers between 10,000 and 80,000. Parallel angled discrete ribs are superior to 90° discrete ribs and parallel angled full ribs, and are recommended for internal cooling passages in gas turbine airfoils. For α = 60° and 45°, parallel discrete ribs have higher ribbed wall heat transfer, lower smooth wall heat transfer, and lower channel pressure drop than parallel full ribs. Parallel 60° discrete ribs have the highest ribbed wall heat transfer and parallel 30° discrete ribs cause the lowest pressure drop. The heat transfer and pressure drops in crossed angled full and discrete rib cases are all lower than those in the corresponding 90° and parallel angled rib cases. Crossed arrays of angled ribs have poor thermal performance and are not recommended.

1991 ◽  
Vol 113 (3) ◽  
pp. 367-374 ◽  
Author(s):  
S. C. Lau ◽  
R. D. McMillin ◽  
J. C. Han

Experiments have been conducted to study the turbulent heat transfer and friction for fully developed flow of air in a square channel in which two opposite walls are roughened with 90 deg full ribs, parallel and crossed full ribs with angles of attack (α) of 60 and 45 deg, 90 deg discrete ribs, and parallel and crossed discrete ribs with α = 60, 45, and 30 deg. The discrete ribs are staggered in alternate rows of three and two ribs. Results are obtained for a rib height-to-channel hydraulic diameter ratio of 0.0625, a rib pitch-to-height ratio of 10, and Reynolds numbers between 10,000 and 80,000. Parallel angled discrete ribs are superior to 90 deg discrete ribs and parallel angled full ribs, and are recommended for internal cooling passages in gas turbine airfoils. For α = 60 and 45 deg, parallel discrete ribs have higher ribbed wall heat transfer, lower smooth wall heat transfer, and lower channel pressure drop than parallel full ribs. Parallel 60 deg discrete ribs have the highest ribbed wall heat transfer and parallel 30 deg discrete ribs cause the lowest pressure drop. The heat transfer and pressure drops in crossed angled full and discrete rib cases are all lower than those in the corresponding 90 deg and parallel angled rib cases. Crossed arrays of angled ribs have poor thermal performance and are not recommended.


1991 ◽  
Vol 113 (3) ◽  
pp. 360-366 ◽  
Author(s):  
S. C. Lau ◽  
R. D. McMillin ◽  
J. C. Han

Experiments study the turbulent heat transfer and friction for fully developed flow of air in a square channel with discrete rib turbulators. The discrete ribs are staggered on two opposite walls of the channel in alternate rows of three and two ribs. Nine rib configurations are examined: transverse ribs with an angle of attack (α) of 90 deg, discrete ribs with α = 90 deg, parallel arrays of discrete ribs with α = 45 deg and −45 deg on alternate rows, and parallel and crossed arrays of discrete ribs with α = 60, 45, and 30 deg. The rib height-to-hydraulic diameter ratio and the rib pitch-to-height ratio are 0.0625 and 10, respectively. The Reynolds number ranges from 10,000 to 80,000. Results show that the average Stanton number in the 90 deg discrete rib case is about 10 to 15 percent higher than that in the 90 deg transverse rib case. Turning the discrete ribs on the oppsite walls 60, 45, or 30 deg in the same direction with respect to the main flow increases the average Stanton number 10 to 20 percent over that in the 90 deg discrete rib case. Parallel oblique discrete ribs with α = 60, 45, and 30 deg have comparable performances and have higher overall heat transfer per unit pumping power than 90 deg discrete ribs. Crossed oblique discrete ribs perform poorly compared with 90 deg discrete ribs and are not recommended.


Author(s):  
S. W. Moon ◽  
S. C. Lau

Dimpled surfaces may be considered for heat transfer enhancement in internal cooling of gas turbine airfoils. In this study, convective heat transfer and pressure drop for turbulent airflow in a square channel with a dimpled wall were examined. Experiments were conducted to determine the average heat transfer coefficient on the dimpled wall and the overall pressure drop across the channel, for nine concave and cylindrical dimples with various diameters and depths, and for Reynolds numbers (based on the channel hydraulic diameter) between 10,000 and 65,000. For the concave and cylindrical dimple configurations studied, the dimples were found to enhance the heat transfer coefficient by 70% (1.7 times) to over three times the value for fully developed turbulent flow through a smooth tube, with increase of the overall pressure drop of over four times. For both the concave and cylindrical dimples, heat transfer was enhanced more when the dimples covered a larger portion of the surface of the wall. The cylindrical dimples caused higher overall heat transfer coefficient (based on the projected area) and lower pressure drop than the concave dimples with the same diameters and depths. Thus, cylindrical dimple configuration may be a better alternative than concave dimples in enhancing heat transfer, for the experimental conditions and dimple configurations investigated. Further experiments are recommended to determine if cylindrical dimples of other dimensions also give higher thermal performances than concave dimples of the same dimensions, subjected to other flow and thermal boundary conditions, such as irregular channels with or without rotation.


10.2514/3.337 ◽  
1992 ◽  
Vol 6 (1) ◽  
pp. 171-173 ◽  
Author(s):  
S. C. Lau ◽  
R. T. Kukreja ◽  
R. D. McMillin

Author(s):  
Gongnan Xie ◽  
Bengt Sunde´n ◽  
Weihong Zhang ◽  
Esa Utriainen ◽  
Lieke Wang

Cooling methods are needed for gas turbine blade tips that are exposed to high temperature gas. A common way to cool the blade and its tip is to design serpentine passages with 180-deg turn under the blade tip-cap inside the turbine blade. Improved internal convective cooling is therefore required to increase the blade tip lifetime. This paper presents numerical predictions of turbulent heat transfer through two-pass channels with and without guide ribs (guide vanes) placed in the turn regions using RANS turbulence modeling. The effects of adding guide ribs on the tip-wall heat transfer enhancement and the channel pressure drop have been analyzed. The inlet Reynolds numbers are ranging from 100,000 to 600,000, and the rib cross-section blockage ratio (rib height to channel height, 2e/H) is 0.182. The detailed fluid flow and heat transfer over the tip-wall are presented. The overall performances of three two-pass channels are evaluated and compared. It is found that the tip heat transfer coefficients of the channels with guide ribs are 20%∼50% higher than that of a channel without guide ribs. The presence of guide ribs could lead to an increased (about 15%) or decreased (up to about 12%) pressure drop, depending upon the geometry and placement of guide ribs. It is suggested that the usage of guide ribs is a suitable way to improve the flow structure and augment the blade tip heat transfer, but is not the most effective way to augment tip-wall heat transfer compared to the augmentation by surface modifications imposed on the tip directly.


1984 ◽  
Vol 106 (1) ◽  
pp. 55-63 ◽  
Author(s):  
P. Souza Mendes ◽  
E. M. Sparrow

A comprehensive experimental study was performed to determine entrance region and fully developed heat transfer coefficients, pressure distributions and friction factors, and patterns of fluid flow in periodically converging and diverging tubes. The investigated tubes consisted of a succession of alternately converging and diverging conical sections (i.e., modules) placed end to end. Systematic variations were made in the Reynolds number, the taper angle of the converging and diverging modules, and the module aspect ratio. Flow visualizations were performed using the oil-lampblack technique. A performance analysis comparing periodic tubes and conventional straight tubes was made using the experimentally determined heat transfer coefficients and friction factors as input. For equal mass flow rate and equal transfer surface area, there are large enhancements of the heat transfer coefficient for periodic tubes, with accompanying large pressure drops. For equal pumping power and equal transfer surface area, enhancements in the 30–60 percent range were encountered. These findings indicate that periodic converging-diverging tubes possess favorable enhancement characteristics.


2011 ◽  
Vol 201-203 ◽  
pp. 171-175
Author(s):  
Wei Zheng Zhang ◽  
Xiao Liu ◽  
Chang Hu Xiang

The turbulent flow in the near-wall region affects the wall heat transfer dominantly. The farther it is from the wall, the less effect it has. So a two-step mechanism of the turbulent wall heat transfer is released: first, the energy is transferred to the outside of the viscous sub-layer by the rolling of the micro-eddy; secondly, the energy gets to the wall by conduction. Then, a theoretical model of wall heat transfer is developed with this concept. The constant in the model is confirmed by experiment and simulation of the transient turbulent heat transfer in pipe flow. Finally, the model is used to predict the local heat flux under different conditions, and the results agree well with the experimental results as well as the simulation results.


Author(s):  
Jenn-Jiang Hwang ◽  
Wei-Jyh Wang ◽  
Dong-Yuo Lai

Three-dimensional turbulent fluid flow and heat transfer characteristics are analyzed numerically for fluids flowing through a rotating periodical two-pass square channel. The two-pass channel is characterized by three parts: (1) a radial-inward straight channel, (2) 180-deg sharp turns, and (3) a radial-outward straight channel. The smooth walls of the two-pass channel are subject to a constant heat flux. A two-equation k-ε turbulence model with modified terms for Coriolis and rotational buoyancy is employed to resolve this elliptic problem. The effects of rotational buoyancy are examined and discussed. It is found that adjacent the 180-deg turn, the rotational buoyancy effect on the local heat transfer is nearly negligible due to the relatively strong entrance effect of 180-deg turns. Downstream the entrance length, the changes in local heat transfer due to the rotational buoyancy in the radially outward flow are more significant than those in the radially inward flow. However, the channel averaged heat transfer is affected slightly by the rotational buoyancy. Whenever the buoyancy effects are sufficiently strong, the flow reversal appears over the leading face of the radial outward flow channel. A comparison of the present numerical results with the available experimental data by taking buoyancy into consideration is also presented.


Sign in / Sign up

Export Citation Format

Share Document