Kinematics of a New High Precision Three Degree-of-Freedom Parallel Manipulator

Author(s):  
Farhad Tahmasebi

Closed-form direct and inverse kinematics of a new three degree-of-freedom (DOF) parallel manipulator with inextensible limbs and base-mounted actuators are presented. The manipulator has higher resolution and precision than the existing three DOF mechanisms with extensible limbs. Since all of the manipulator actuators are base-mounted; higher payload capacity, smaller actuator sizes, and lower power dissipation can be obtained. The manipulator is suitable for alignment applications where only tip, tilt, and piston motions are significant. The direct kinematics of the manipulator is reduced to solving an eighth-degree polynomial in the square of tangent of half-angle between one of the limbs and the base plane. Hence, there are at most sixteen assembly configurations for the manipulator. In addition, it is shown that the sixteen solutions are eight pairs of reflected configurations with respect to the base plane. Numerical examples for the direct and inverse kinematics of the manipulator are also presented.

2006 ◽  
Vol 129 (3) ◽  
pp. 320-325 ◽  
Author(s):  
Farhad Tahmasebi

Closed-form direct and inverse kinematics of a new three-degree-of-freedom (DOF) parallel manipulator with inextensible limbs and base-mounted actuators are presented. The manipulator has higher resolution and precision than the existing three-DOF mechanisms with extensible limbs. Since all of the manipulator actuators are base mounted, higher payload capacity, smaller actuator sizes, and lower power dissipation can be obtained. The manipulator is suitable for alignment applications where only tip, tilt, and piston motions are significant. The direct kinematics of the manipulator is reduced to solving an eighth-degree polynomial in the square of the tangent of the half-angle between one of the limbs and the base plane. Hence, there are at most 16 assembly configurations for the manipulator. In addition, it is shown that the 16 solutions are eight pairs of reflected configurations with respect to the base plane. Numerical examples for the direct and inverse kinematics of the manipulator are also presented.


2008 ◽  
Vol 1 (1) ◽  
Author(s):  
Gim Song Soh ◽  
J. Michael McCarthy

This paper presents a procedure that determines the dimensions of two constraining links to be added to a three degree-of-freedom spherical parallel manipulator so that it becomes a one degree-of-freedom spherical (8, 10) eight-bar linkage that guides its end-effector through five task poses. The dimensions of the spherical parallel manipulator are unconstrained, which provides the freedom to specify arbitrary base attachment points as well as the opportunity to shape the overall movement of the linkage. Inverse kinematics analysis of the spherical parallel manipulator provides a set of relative poses between all of the links, which are used to formulate the synthesis equations for spherical RR chains connecting any two of these links. The analysis of the resulting spherical eight-bar linkage verifies the movement of the system.


1994 ◽  
Vol 116 (2) ◽  
pp. 587-593 ◽  
Author(s):  
C. M. Gosselin ◽  
J. Sefrioui ◽  
M. J. Richard

This paper presents a polynomial solution to the direct kinematic problem of a class of spherical three-degree-of-freedom parallel manipulators. This class is defined as the set of manipulators for which the axes of the three revolute joints attached to the gripper link are coplanar and symmetrically arranged. It is shown that, for these manipulators, the direct kinematic problem admits a maximum of 8 real solutions. A polynomial of degree 8 is obtained here to support this result and cases for which all the roots of the polynomial lead to real configurations are presented. Finally, the spherical parallel manipulator with collinear actuators, which received some attention in the literature, is also treated and is shown to lead to a minimal polynomial of the same degree. Examples of the application of the method to manipulators of each category are given and solved.


1996 ◽  
Vol 118 (1) ◽  
pp. 22-28 ◽  
Author(s):  
C. M. Gosselin

This paper introduces a novel approach for the computation of the inverse dynamics of parallel manipulators. It is shown that, for this type of manipulator, the inverse kinematics and the inverse dynamics procedures can be easily parallelized. The result is a closed-form efficient algorithm using n processors, where n is the number of kinematic chains connecting the base to the end-effector. The dynamics computations are based on the Newton-Euler formalism. The parallel algorithm arises from a judicious choice of the coordinate frames attached to each of the legs, which allows the exploitation of the parallel nature of the mechanism itself. Examples of the application of the algorithm to a planar three-degree-of-freedom parallel manipulator and to a spatial six-degree-of-freedom parallel manipulator are presented.


Robotica ◽  
1999 ◽  
Vol 17 (4) ◽  
pp. 437-445 ◽  
Author(s):  
Bruno Siciliano

This paper is aimed at presenting a study on the kinematics of the Tricept robot, which comprises a three-degree-of-freedom (dof) parallel structure having a radial link of variable length. The robot workspace is characterized and the inverse kinematics equation is obtained by using spherical coordinates. The inverse differential kinematics and statics are derived in terms of both an analytical and a geometric Jacobian, and a manipulability analysis along the various workspace directions is developed using the concept of force and velocity ellipsoids. A Jacobian-based Closed-Loop Direct Kinematics (CLDK) algorithm is presented to solve the direct kinematics problem along a given trajectory. Simulation results are illustrated for an industrial robot of the Tricept family.


1994 ◽  
Vol 116 (4) ◽  
pp. 1141-1147 ◽  
Author(s):  
F. Tahmasebi ◽  
L.-W. Tsai

Closed-form direct kinematics solution of a new three-limbed six-degree-of-freedom minimanipulator is presented. Five-bar linkages and inextensible limbs are used in synthesis of the minimanipulator to improve its positional resolution and stiffness. All of the minimanipulator actuators are base-mounted. Kinematic inversion is used to reduce the direct kinematics of the mimimanipulator to an eighth-degree polynomial in the square of tangent of half-angle between one of the limbs and the moving platform. Hence, the maximum number of assembly configurations for the minimanipulator is sixteen. Furthermore, it is proved that the sixteen solutions are eight pairs of reflected configurations with respect to the plane passing through the lower ends of the three limbs. A numerical example is also presented and the results are verified by an inverse kinematics analysis.


Robotica ◽  
2018 ◽  
Vol 37 (7) ◽  
pp. 1240-1266 ◽  
Author(s):  
Abhilash Nayak ◽  
Stéphane Caro ◽  
Philippe Wenger

SUMMARYThis paper deals with the kinematic analysis and enumeration of singularities of the six degree-of-freedom 3-RPS-3-SPR series–parallel manipulator (S–PM). The characteristic tetrahedron of the S–PM is established, whose degeneracy is bijectively mapped to the serial singularities of the S–PM. Study parametrization is used to determine six independent parameters that characterize the S–PM and the direct kinematics problem is solved by mapping the transformation matrix between the base and the end-effector to a point in ℙ7. The inverse kinematics problem of the 3-RPS-3-SPR S–PM amounts to find the location of three points on three lines. This problem leads to a minimal octic univariate polynomial with four quadratic factors.


Author(s):  
Clément M. Gosselin ◽  
Jaouad Sefrioui ◽  
Marc J. Richard

Abstract This paper presents a polynomial solution to the direct kinematic problem of a class of spherical three-degree-of-freedom parallel manipulators. This class is defined as the set of manipulators for which the axes of the three revolute joints attached to the gripper link are coplanar and symmetrically arranged. It is shown that, for these manipulators, the direct kinematic problem admits a maximum of 8 real solutions. A polynomial of degree 8 is obtained here to support this result and cases for which all the roots of the polynomial lead to real configurations are presented. Finally, the spherical parallel manipulator with collinear actuators, which received some attention in the literature, is also treated and is shown to lead to a minimal polynomial of the same degree. Examples of the application of the method to manipulators of each category are given and solved.


2013 ◽  
Vol 325-326 ◽  
pp. 1014-1018
Author(s):  
Hai Rong Fang ◽  
Zhi Hong Chen ◽  
Yue Fa Fang

In this paper, a novel 3-degree-of-freedom (DOF) parallel manipulator that can perform three rotations around the remote centre is presented. The theory of screws and reciprocal screws is employed for the analysis of the geometric conditions. In particular, using circular guide to instead of R joints, so that has the advantage of enabling continuous 360° revolute around Z-axis. The inverse kinematics of mechanism is given and the workspace has a good performance. To compare with the machine constructed with traditional joints, it has the advantage of high rigidity and precision.


1989 ◽  
Vol 111 (2) ◽  
pp. 202-207 ◽  
Author(s):  
C. Gosselin ◽  
J. Angeles

In this paper, the design of a spherical three-degree-of-freedom parallel manipulator is considered from a kinematic viewpoint. Three different design criteria are established and used to produce designs having optimum characteristics. These criteria are (a) symmetry (b) workspace maximization, and (c) isotropy. The associated problems are formulated and their solutions, one of them requiring to resort to a numerical method, are provided. Optimum designs are thereby obtained. A discussion on singularities is also included.


Sign in / Sign up

Export Citation Format

Share Document