Isotropic Analysis of Line Vector Forces and its Application in the Type Synthesis of Redundantly Actuated 3-DOF Translational Parallel Mechanisms

Author(s):  
Yundou Xu ◽  
Xin Zhou ◽  
Ling Lu ◽  
Jiantao Yao ◽  
Yongsheng Zhao

The load-carrying capacity of a mechanism is closely related to its line vector force. This article presents a thorough isotropic analysis of line vector forces. The results show that the isotropic condition can be satisfied when the line vector forces are evenly distributed on a conical surface with a cone-top angle of 109.472 degrees. By combining the isotropic line vector forces, a method for the type synthesis of 3-DOF, redundantly actuated translational parallel mechanisms (PMs) is proposed, in which the arrangement of the active joints is taken into account in advance. Using this method, a kinematic chain with a twist system reciprocal to both the constraint and actuation wrenches is constructed firstly, and then the active joint reciprocal to the constraint wrenches but not to the actuation wrench is constructed. Thus, a series of typical redundantly actuated PMs with isotropic actuation forces are obtained. Finally, the 4-PRRR PM is analyzed as an example, and the results show that the isotropy of the load-carrying capacity can always be satisfied during its movement.

Author(s):  
M. Gaber Mohamed

Abstract This paper introduces a new generation of robotic mechanisms. Such mechanisms are intermediate between the familiar serial and the fully-parallel robotic mechanisms. They usually comprise several subassemblies that are serially connected to one another. Each subassembly is basically an over constrained fully parallel kinematic chain. Such mechanisms are called “Partially-Parallel Robotic Mechanisms.” A type synthesis of planar and spatial partially-parallel robotic mechanisms is performed. Several practical designs are then introduced and studied for future robotic applications. Several performance criteria of this type of mechanisms are discussed and compared with those of serial as well as fully-parallel robotic mechanisms. Partially-parallel mechanisms are superior than serial mechanisms in rigidity, strength precision positioning and load carrying capacity. Furthermore, they are relatively less complex and have larger range of motion than fully-parallel mechanisms.


2014 ◽  
Vol 78 (1) ◽  
pp. 241-250 ◽  
Author(s):  
Jun Wu ◽  
Xiaolei Chen ◽  
Liping Wang ◽  
Xinjun Liu

2018 ◽  
Vol 10 (5) ◽  
Author(s):  
Long Kang ◽  
Wheekuk Kim ◽  
Byung-Ju Yi

This paper introduces a family of statically balanced five-degree-of-freedom (5DOF) parallel mechanisms (PMs) with kinematic and actuation redundancy. Moving platforms of this family of PMs can provide 4DOF Schönflies motion. Three applications are considered in this work. The first and second applications use kinematic redundancy to avoid parallel singularities and perform an auxiliary grasping task in sequence. The third application incorporates actuation redundancy into a kinematically redundant manipulator to increase the load-carrying capacity. Screw theory was used to derive the Jacobian of the 5DOF PM with kinematic and actuation redundancy. Parallel singularities can be completely alleviated by controlling the orientation of the redundant link, thereby obtaining a large rotational workspace, and actuation redundancy increases the load-carrying capacity. Using a commercially available multibody dynamic simulator, an example of trajectory was performed to illustrate the large rotational workspace of the first and second applications and compare the Euclidean norm of the vector of actuation torque of nonredundant and redundant PMs. Three prototypes were also developed to demonstrate the output motion and static balancing property.


2005 ◽  
Vol 10 (2) ◽  
pp. 151-160 ◽  
Author(s):  
J. Kala ◽  
Z. Kala

Authors of article analysed influence of variability of yield strength over cross-section of hot rolled steel member to its load-carrying capacity. In calculation models, the yield strength is usually taken as constant. But yield strength of a steel hot-rolled beam is generally a random quantity. Not only the whole beam but also its parts have slightly different material characteristics. According to the results of more accurate measurements, the statistical characteristics of the material taken from various cross-section points (e.g. from a web and a flange) are, however, more or less different. This variation is described by one dimensional random field. The load-carrying capacity of the beam IPE300 under bending moment at its ends with the lateral buckling influence included is analysed, nondimensional slenderness according to EC3 is λ¯ = 0.6. For this relatively low slender beam the influence of the yield strength on the load-carrying capacity is large. Also the influence of all the other imperfections as accurately as possible, the load-carrying capacity was determined by geometrically and materially nonlinear solution of very accurate FEM model by the ANSYS programme.


2005 ◽  
Vol 10 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Z. Kala

The load-carrying capacity of the member with imperfections under axial compression is analysed in the present paper. The study is divided into two parts: (i) in the first one, the input parameters are considered to be random numbers (with distribution of probability functions obtained from experimental results and/or tolerance standard), while (ii) in the other one, the input parameters are considered to be fuzzy numbers (with membership functions). The load-carrying capacity was calculated by geometrical nonlinear solution of a beam by means of the finite element method. In the case (ii), the membership function was determined by applying the fuzzy sets, whereas in the case (i), the distribution probability function of load-carrying capacity was determined. For (i) stochastic solution, the numerical simulation Monte Carlo method was applied, whereas for (ii) fuzzy solution, the method of the so-called α cuts was applied. The design load-carrying capacity was determined according to the EC3 and EN1990 standards. The results of the fuzzy, stochastic and deterministic analyses are compared in the concluding part of the paper.


2005 ◽  
Vol 33 (4) ◽  
pp. 210-226 ◽  
Author(s):  
I. L. Al-Qadi ◽  
M. A. Elseifi ◽  
P. J. Yoo ◽  
I. Janajreh

Abstract The objective of this study was to quantify pavement damage due to a conventional (385/65R22.5) and a new generation of wide-base (445/50R22.5) tires using three-dimensional (3D) finite element (FE) analysis. The investigated new generation of wide-base tires has wider treads and greater load-carrying capacity than the conventional wide-base tire. In addition, the contact patch is less sensitive to loading and is especially designed to operate at 690kPa inflation pressure at 121km/hr speed for full load of 151kN tandem axle. The developed FE models simulated the tread sizes and applicable contact pressure for each tread and utilized laboratory-measured pavement material properties. In addition, the models were calibrated and properly validated using field-measured stresses and strains. Comparison was established between the two wide-base tire types and the dual-tire assembly. Results indicated that the 445/50R22.5 wide-base tire would cause more fatigue damage, approximately the same rutting damage and less surface-initiated top-down cracking than the conventional dual-tire assembly. On the other hand, the conventional 385/65R22.5 wide-base tire, which was introduced more than two decades ago, caused the most damage.


2020 ◽  
Vol 2020 (21) ◽  
pp. 146-153
Author(s):  
Anatolii Dekhtyar ◽  
◽  
Oleksandr Babkov ◽  

Sign in / Sign up

Export Citation Format

Share Document