Product Family and Product Platform Benchmarking With Commonality and Variety Indices

Author(s):  
Timothy W. Simpson

As companies are pressured to reduce costs and lead-times while increasing variety, the need to design products based on common platform “elements” is growing. Product family design has become an effective strategy to meet this challenge, but companies still struggle with assessing how “good” their product family is. Companies routinely benchmark their individual products, but they struggle with how to benchmark their platforms and product families against their competitors. A novel approach for product family benchmarking is introduced in this paper integrating commonality and variety indices to compare competing product families and their platform “elements”. An example involving two families of men’s razors is presented to illustrate the approach. Limitations of the approach and future work are also discussed.

Author(s):  
TIMOTHY W. SIMPSON

In an effort to improve customization for today's highly competitive global marketplace, many companies are utilizing product families and platform-based product development to increase variety, shorten lead times, and reduce costs. The key to a successful product family is the product platform from which it is derived either by adding, removing, or substituting one or more modules to the platform or by scaling the platform in one or more dimensions to target specific market niches. This nascent field of engineering design has matured rapidly in the past decade, and this paper provides a comprehensive review of the flurry of research activity that has occurred during that time to facilitate product family design and platform-based product development for mass customization. Techniques for identifying platform leveraging strategies within a product family are reviewed along with metrics for assessing the effectiveness of product platforms and product families. Special emphasis is placed on optimization approaches and artificial intelligence techniques to assist in the process of product family design and platform-based product development. Web-based systems for product platform customization are also discussed. Examples from both industry and academia are presented throughout the paper to highlight the benefits of product families and product platforms. The paper concludes with a discussion of potential areas of research to help bridge the gap between planning and managing families of products and designing and manufacturing them.


Author(s):  
Johan O¨lvander ◽  
Xiaolong Feng ◽  
Bo Holmgren

Product family design is a well recognized method to address the demands of mass customization. A potential drawback of product families is that the performance of individual members are reduced due to the constraints added by the common platform, i.e. parts and components need to be shared by other family members. This paper presents a formal mathematical framework where the product family design problem is stated as an optimization problem and where optimization is used to find an optimal product family. The object of study is kinematics design of a family of industrial robots. The robot is a serial manipulator where different robots share arms from a common platform. The objective is to show the trade-off between the size of the common platform and the kinematics performance of the robot.


Author(s):  
Timothy W. Simpson

In an effort to improve customization for today’s highly competitive global marketplace, many companies are utilizing product families to increase variety, shorten lead-times, and reduce costs. The key to a successful product family is the product platform from which it is derived either by adding, removing, or substituting one or more modules to the platform or by scaling the platform in one or more dimensions to target specific market niches. This nascent field of engineering design research has matured rapidly in the past decade, and this paper provides an extensive review of the research activity that has occurred during that time to facilitate product platform design and optimization. Techniques for identifying platform leveraging strategies within a product family are reviewed along with optimization-based approaches to help automate the design of a product platform and its corresponding family of products. Examples from both industry and academia are presented throughout the paper to highlight the benefits of platform-based product development, and the paper concludes with a discussion of promising research directions to help bridge the gap between planning and managing families of products and designing and manufacturing them.


Author(s):  
Timothy W. Simpson ◽  
Tucker Marion ◽  
Olivier de Weck ◽  
Katja Ho¨ltta¨-Otto ◽  
Michael Kokkolaras ◽  
...  

Many companies constantly struggle to find cost-effective solutions to satisfy the diverse demands of their customers. In this paper, we report on two recent industry-focused conferences that emphasized platform design, development, and deployment as a means to increase variety, shorten lead-times, and reduce development and production costs. The first conference, Platform Management for Continued Growth, was held November–December 2004 in Atlanta, Georgia, and the second, 2005 Innovations in Product Development Conference — Product Families and Platforms: From Strategic Innovation to Implementation, was held in November 2005 in Cambridge, Massachusetts. The two conferences featured presentations from academia and more than 20 companies who shared their successes and frustrations with platform design and deployment, platform-based product development, and product family planning. Our intent is to provide a summary of the common themes that we observed in these two conferences. Based on this discussion, we extrapolate upon industry’s needs in platform design, development, and deployment to stimulate and catalyze future work in this important area of research.


Author(s):  
Amar Pandit ◽  
Zahed Siddique

To survive in the current market, many companies are moving toward design and development of product families using a platform approach. To effectively develop a family of products, companies have to consider both component and assembly perspectives. The assembly perspective has many issues associated with it for developing common platforms, which includes assemblability evaluation for the entire family. Application of Design for Assembly techniques to evaluate product family will require modifications to the current single product DFA method. In this paper a product family DFA tool and guidelines are presented. The application of this product family DFA tool is illustrated using Walkman® and Coffeemaker product family.


Author(s):  
Jonathan R. A. Maier ◽  
Georges M. Fadel

Abstract The realization that designing products in families can and does have significant technological and economic advantages over traditional single product design has motivated increasing interest in recent years in formal design tools and methodologies for product family design. However, currently there is no guidance for designers in the first key strategic decisions of product family design, in particular determining the type of product family to design. Hence in this paper, first a taxonomy of different types of product families is presented which consists of seven types of product families, categorized based on number of products and time of product introduction. Next a methodology is introduced to aid designers in determining which type of product family is appropriate, based upon early knowledge about the nature of the intended product(s) and their intended market(s). From this information it also follows both which manufacturing paradigm and which fundamental design strategies are appropriate for the product family. Finally the proposed methodology is illustrated through a case study examining a family of whitewater kayaks.


Author(s):  
Xiaomeng Chang ◽  
Janis Terpenny

High quality, high impact and economical products and systems are important goals for an enterprise. The usage of product families can be strategic to achieving these goals, yet defining these families can be challenging, requiring the consideration of numerous cost factors. This requires bringing together a great number of heterogeneous data sources of varying formats in a manner that allows the product development team to easily locate and reuse information in a collaborative manner across time and space. To date, our work has focused on the development and use of an Activity-Based Cost ontology (ABC ontology) to guide designers drill down to get at information for product family design. However, this ontology is built in such a way that it can only support information retrieval from the ontology and does not bring together and connect heterogeneous data resources. It does not address the problem of designers who struggle with obtaining relevant details from different departments in an enterprise. While there have been several semantic data schema integration tools for heterogeneous data resources integration, these tools cannot guide users to related information, that would lead to the root cause of the high cost. In this paper, in order to better manage cost in product family design, an ontology-based framework is put forward that builds on our prior work and combines the advantages of ABC ontology and data schema integration tools. The ontology-based framework can guide users to the proper information aspects through querying the central ontology, and give users detailed information about these aspects from heterogeneous data resources with the support of local ontologies. Ultimately, this framework will facilitate designers with better utilization of cost-related factors for product family design from a whole enterprise perspective.


2002 ◽  
Vol 124 (2) ◽  
pp. 164-172 ◽  
Author(s):  
Achille Messac ◽  
Michael P. Martinez ◽  
Timothy W. Simpson

In an effort to increase customization for today’s highly competitive global markets, many companies are looking to product families to increase product variety and shorten product lead-times while reducing costs. The key to a successful product family is the common product platform around which the product family is derived. Building on our previous work in product family design, we introduce a product family penalty function (PFPF) in this paper to aid in the selection of common and scaling parameters for families of products derived from scalable product platforms. The implementation of the PFPF utilizes the powerful physical programming paradigm to formulate the problem in terms of physically meaningful parameters. To demonstrate the proposed approach, a family of electric motors is developed and compared against previous results. We find that the PFPF enables us to properly balance commonality and performance within the product family through the judicious selection of the common parameters that constitute the product platform and the scaling parameters used to instantiate the product family.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Henri J. Thevenot ◽  
Timothy W. Simpson

Today’s companies are pressured to develop platform-based product families to increase variety, while keeping production costs low. Determining why a platform works, and alternatively why it does not, is an important step in the successful implementation of product families and product platforms in any industry. Internal and competitive benchmarking is essential to obtain knowledge of how successful product families are implemented, thus avoiding potential pitfalls of a poor product platform design strategy. While the two fields of product family design and benchmarking have been growing rapidly lately, we have found few tools that combine the two for product family benchmarking. To address this emerging need, we introduce the product family benchmarking method (PFbenchmark) to assess product family design alternatives (PFDAs) based on commonality/variety tradeoff and cost analysis. The proposed method is based on product family dissection, and utilizes the Comprehensive Metric for Commonality developed in previous work to assess the level of commonality and variety in each PFDA, as well as the corresponding manufacturing cost. The method compares not only (1) existing PFDAs but also (2) the potential cost savings and commonality/variety improvement after redesign using two plots—the commonality/variety plot and the cost plot—enabling more effective comparisons across PFDAs. An example of benchmarking of two families of valves is presented to demonstrate the proposed method.


2013 ◽  
Vol 475-476 ◽  
pp. 1402-1405
Author(s):  
Xian Fu Cheng ◽  
Qi Hang Zhu

A new design method for product family was presented based on adaptable product platform. Firstly, customer demands were analyzed for bridge crane. Secondly, axiomatic design was utilized as framework to zigzaging mapping between functional requirements and design parameters, and design matrix was established. Then the sensitivity analysis among design parameters and between design parameters and functional requirements was done. The design relation matrix was established and relation degree among design parameters was calculated. Based on above analysis, the platform parameters were identified.


Sign in / Sign up

Export Citation Format

Share Document