Predictive Motion Planning for Autonomous Vehicles With Geometric Constraints via Convex Optimization

Author(s):  
Xiaoyuan Zhu ◽  
Jian Chen ◽  
Yan Ma ◽  
Jianqiang Deng ◽  
Yuexuan Wang

Abstract In this paper, we propose an MPC-based motion planning algorithm, including a decision-making module, an obstacle-constraints generating module, and an MPC-based planning module. The designed decision module effectively distinguishes between structured and unstructured roads and processes them separately, so that the algorithm is more robust in different environments. Besides, the movement of obstacles is considered in the decision-making and obstacle constraints generating module. By processing obstacles with lateral and longitudinal speed separately, obstacle avoidance can be done in scenarios with moving obstacles, including moving obstacles crossing the road. Instead of treating the vehicle as a mass point, we explicitly consider the geometric constraints by modeling the vehicle as three intersecting circles when generating obstacle constraints. This ensures that the vehicle is collision-free in motion planning, especially when the vehicle turns. For non-convex obstacle constraints, we propose an algorithm that generates up to two alternative linear constraints to convexify the obstacle constraints for improving computational efficiency. In MPC, we consider the vehicle kino-dynamic constraints and two generated linear constraints. Therefore, the proposed method can achieve better real-time performance and can be applied to more complicated traffic scenarios with moving obstacles. Simulation results in three different scenarios show that motion planning can achieve satisfactory performance in both structured and unstructured roads with moving obstacles.

2020 ◽  
Vol 10 (9) ◽  
pp. 3180 ◽  
Author(s):  
Dongfang Dang ◽  
Feng Gao ◽  
Qiuxia Hu

Vehicles are highly coupled and multi-degree nonlinear systems. The establishment of an appropriate vehicle dynamical model is the basis of motion planning for autonomous vehicles. With the development of autonomous vehicles from L2 to L3 and beyond, the automatic driving system is required to make decisions and plans in a wide range of speeds and on bends with large curvature. In order to make precise and high-quality control maneuvers, it is important to account for the effects of dynamical coupling in these working conditions. In this paper, a new single-coupled dynamical model (SDM) is proposed to deal with the various dynamical coupling effects by identifying and simplifying the complicated one. An autonomous vehicle motion planning problem is then formulated using the nonlinear model predictive control theory (NMPC) with the SDM constraint (NMPC-SDM). We validated the NMPC-SDM with hardware-in-the-loop (HIL) experiments to evaluate improvements to control performance by comparing with the planners original design, using the kinematic and single-track models. The comparative results show the superiority of the proposed motion planning algorithm in improving the maneuverability and tracking performance.


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3318 ◽  
Author(s):  
Carlos Martínez ◽  
Felipe Jiménez

Autonomous driving is undergoing huge developments nowadays. It is expected that its implementation will bring many benefits. Autonomous cars must deal with tasks at different levels. Although some of them are currently solved, and perception systems provide quite an accurate and complete description of the environment, high-level decisions are hard to obtain in challenging scenarios. Moreover, they must comply with safety, reliability and predictability requirements, road user acceptance, and comfort specifications. This paper presents a path planning algorithm based on potential fields. Potential models are adjusted so that their behavior is appropriate to the environment and the dynamics of the vehicle and they can face almost any unexpected scenarios. The response of the system considers the road characteristics (e.g., maximum speed, lane line curvature, etc.) and the presence of obstacles and other users. The algorithm has been tested on an automated vehicle equipped with a GPS receiver, an inertial measurement unit and a computer vision system in real environments with satisfactory results.


Author(s):  
Rahul Kala ◽  
Kevin Warwick

AbstractThe problem of planning multiple vehicles deals with the design of an effective algorithm that can cause multiple autonomous vehicles on the road to communicate and generate a collaborative optimal travel plan. Our modelling of the problem considers vehicles to vary greatly in terms of both size and speed, which makes it sub-optimal to have a faster vehicle follow a slower vehicle or for vehicles to drive with predefined speed lanes. It is essential to have a fast planning algorithm whilst still being probabilistically complete. The Rapidly Exploring Random Trees (RRT) algorithm developed and reported on here uses a problem specific coordination axis, a local optimization algorithm, priority based coordination, and a module for deciding travel speeds. Vehicles are assumed to remain in their current relative position laterally on the road unless otherwise instructed. Experimental results presented here show regular driving behaviours, namely vehicle following, overtaking, and complex obstacle avoidance. The ability to showcase complex behaviours in the absence of speed lanes is characteristic of the solution developed.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3755
Author(s):  
Juan Medina-Lee ◽  
Antonio Artuñedo ◽  
Jorge Godoy ◽  
Jorge Villagra

Safe and adaptable motion planning for autonomous vehicles remains an open problem in urban environments, where the variability of situations and behaviors may become intractable using rule-based approaches. This work proposes a use-case-independent motion planning algorithm that generates a set of possible trajectories and selects the best of them according to a merit function that combines longitudinal comfort, lateral comfort, safety and utility criteria. The system was tested in urban scenarios on simulated and real environments, and the results show that different driving styles can be achieved according to the priorities set in the merit function, always meeting safety and comfort parameters imposed by design.


Author(s):  
Naitik Nakrani ◽  
Maulin M. Joshi

In the recent era, machine learning-based autonomous vehicle parking and obstacle avoidance navigation have drawn increased attention. An intelligent design is needed to solve the autonomous vehicles related problems. Presently, autonomous parking systems follow path planning techniques that generally do not possess a quality and a skill of natural adapting behavior of a human. Most of these designs are built on pre-defined and fixed criteria. It needs to be adaptive with respect to the vehicle dynamics. A novel adaptive motion planning algorithm is proposed in this paper that incorporates obstacle avoidance capability into a standalone parking controller that is kept adaptive to vehicle dimensions to provide human-like intelligence for parking problems. This model utilizes fuzzy membership thresholds concerning vehicle dimensions and vehicle localization to enhance the vehicle’s trajectory during parking when taking into consideration obstacles. It is generalized for all segments of cars, and simulation results prove the proposed algorithm’s effectiveness.


2021 ◽  
Vol 103 (4) ◽  
Author(s):  
Stefano Primatesta ◽  
Abdalla Osman ◽  
Alessandro Rizzo

AbstractThis paper introduces a kinodynamic motion planning algorithm for Unmanned Aircraft Systems (UAS), called MP-RRT#. MP-RRT# joins the potentialities of RRT# with a strategy based on Model Predictive Control to efficiently solve motion planning problems under differential constraints. Similar to other RRT-based algorithms, MP-RRT# explores the map constructing an asymptotically optimal graph. In each iteration the graph is extended with a new vertex in the reference state of the UAS. Then, a forward simulation is performed using a Model Predictive Control strategy to evaluate the motion between two adjacent vertices, and a trajectory in the state space is computed. As a result, the MP-RRT# algorithm eventually generates a feasible trajectory for the UAS satisfying dynamic constraints. Simulation results obtained with a simulated drone controlled with the PX4 autopilot corroborate the validity of the MP-RRT# approach.


Sign in / Sign up

Export Citation Format

Share Document