Comparison of the Performance of a Solar Thermal Absorption Chiller and a Novel Sub-Wet Bulb Evaporative Chiller for Cooling Processes in Food Manufacturing

Author(s):  
Emily Fricke ◽  
Vinod Narayanan

Abstract The food processing industry exists at the nexus between food, energy, and water systems. Improving the sustainability of this industry is critical to reduction of carbon emissions and enhanced utilization of vital resources such as water. The overarching aim of the present research is to create a process-based modeling platform for food processing systems that would allow the most appropriate combination of water-sustainable, energy-efficient, and renewable energy (WERE) technologies to be determined for a system. This paper focuses on one specific process in a thermal processing line: the cooling step after sterilization and prior to packaging. A typical process might use groundwater in a once-through loop. To reduce water use, two sustainable alternatives are considered and compared: (a) solar thermal coupled with an absorption chiller and (b) evaporative cooling of chilled water using a sub-wet bulb evaporative chiller (SWEC). The former uses a parabolic trough solar field with thermal storage that is connected to a single-effect water/lithium bromide (LiBr) chiller. The field and thermal storage are modeled using NREL’s System Advisor Model software and coupled to in-house Python code for the chiller and process heat exchanger. For the latter option, a novel SWEC is used as a chiller. The energy and water use, and capital cost of the two alternative technologies are presented.

Author(s):  
Khamid Mahkamov ◽  
Piero Pili ◽  
Roberto Manca ◽  
Arthur Leroux ◽  
Andre Charles Mintsa ◽  
...  

The small solar thermal power plant is being developed with funding from EU Horizon 2020 Program. The plant is configured around a 2-kWel Organic Rankine Cycle turbine and solar field, made of Fresnel mirrors. The solar field is used to heat thermal oil to the temperature of about 240 °C. This thermal energy is used to run the Organic Rankine Cycle turbine and the heat rejected in its condenser (about 18-kWth) is utilized for hot water production and living space heating. The plant is equipped with a latent heat thermal storage to extend its operation by about 4 hours during the evening building occupancy period. The phase change material used is Solar salt with the melting/solidification point at about 220 °C. The total mass of the PCM is about 3,800 kg and the thermal storage capacity is about 100 kWh. The operation of the plant is monitored by a central controller unit. The main components of the plant are being manufactured and laboratory tested with the aim to assemble the plant at the demonstration site, located in Catalonia, Spain. At the first stage of investigations the ORC turbine will be directly integrated with the solar filed to evaluate their joint performance. During the second stage of tests, the Latent Heat Thermal Storage will be incorporated into the plant and its performance during the charging and discharging processes will be investigated. It is planned that the continuous filed tests of the whole plant will be performed during the 2018–2019 period.


Author(s):  
Klaus-Ju¨rgen Riffelmann ◽  
Daniela Graf ◽  
Paul Nava

From 1984 to 1992, the first commercial solar thermal power plants — SEGS I to IX — were built in the Californian Mojave desert. The first generation of trough collectors (LS1) used in SEGS I showed an aperture area of about 120 m2 (1’292 ft2), having an aperture width of 2.5 m (8.2 ft). With the second generation collector (LS2), used in SEGS II to VI, the aperture width was doubled to 5 m (16.4 ft). The third generation (LS3) has been increased regarding width (5.76 m or 18.9 ft) and length (96 m or 315 ft) to about 550 m2 (5’920 ft2) aperture. It was used in the last SEGS plants VIII and IX, those plants having a capacity of 80 MW each. After more than 10 years stagnancy, several commercial plants in the US (the 64 MW Nevada Solar One project) and Spain (the ANDASOL projects, 50 MW each with 8 h thermal storage) started operation in 2007/2008. New collectors have been developed, but all are showing similar dimensions as either the LS2 or the LS3 collector. One reason for this is the limited availability of key components, mainly the parabolic shaped mirrors and heat collection elements. However, in order to reduce cost, solar power projects are getting larger and larger. Several projects in the range of 250 MW, with and without thermal storage system, are going to start construction in 2011, requiring solar field sizes of 1 to 2.5 Million m2. FLABEG, market leader of parabolic shaped mirrors and e.g. mirror supplier for all SEGS plants and most of the Spanish plants, has started the development of a new collector generation to serve the urgent market needs: lower cost and improved suitability for large solar fields. The new generation will utilize accordingly larger reflector panels and heat collection elements attended by advanced design, installation methods and control systems at the same time. The so-called ‘Ultimate Trough’ collector is showing an aperture area of 1’667 m2 (17’944 ft2), with an aperture width of 7.5 m (24.6 ft). Some design features are presented in this paper, showing how the new and huge dimensions could be realized without compromising stiffness, and bending of the support structure and improving the optical performance at the same time. Solar field layouts for large power plants are presented, and solar field cost savings in the range of 25% are disclosed.


2011 ◽  
Vol 88 (11) ◽  
pp. 4055-4066 ◽  
Author(s):  
Antonio Rovira ◽  
María José Montes ◽  
Manuel Valdes ◽  
José María Martínez-Val

Author(s):  
Mamdouh El Haj Assad ◽  
Milad Sadeghzadeh ◽  
Mohammad Hossein Ahmadi ◽  
Mohammad Al‐Shabi ◽  
Mona Albawab ◽  
...  

2020 ◽  
Vol 248 ◽  
pp. 119257 ◽  
Author(s):  
Xinbin Lao ◽  
Xiaoyang Xu ◽  
Weihui Jiang ◽  
Jian Liang ◽  
Huan Liu

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3731
Author(s):  
Simon Kamerling ◽  
Valéry Vuillerme ◽  
Sylvain Rodat

Using solar power for industrial process heat is an increasing trend to fight against climate change thanks to renewable heat. Process heat demand and solar flux can both present intermittency issues in industrial systems, therefore solar systems with storage introduce a degree of freedom on which optimization, on a mathematical basis, can be performed. As the efficiency of solar thermal receivers varies as a function of temperature and solar flux, it seems natural to consider an optimization on the operating temperature of the solar field. In this paper, a Mixed Integer Linear Programming (MILP) algorithm is developed to optimize the operating temperature in a system consisting of a concentrated solar thermal field with storage, hybridized with a boiler. The MILP algorithm optimizes the control trajectory on a time horizon of 48 h in order to minimize boiler use. Objective function corresponds to the boiler use, for completion of the heat from the solar field, whereas the linear constraints are a simplified representation of the system. The solar field mass flow rate is the optimization variable which is directly linked to the outlet temperature of the solar field. The control trajectory consists of the solar field mass flow rate and outlet temperature, along with the auxiliary mass flow rate going directly to the boiler. The control trajectory is then injected in a 0D model of the plant which performs more detailed calculations. For the purpose of the study, a Linear Fresnel system is investigated, with generic heat demand curves and constant temperature demand. The value of the developed algorithm is compared with two other control approaches: one operating at the nominal solar field output temperature, and the other one operating at the actual demand mass flow rate. Finally, a case study and a sensitivity analysis are presented. The MILP’s control shows to be more performant, up to a relative increase of the annual solar fraction of 4% at 350 °C process temperature. Novelty of this work resides in the MILP optimization of temperature levels presenting high non-linearities, applied to a solar thermal system with storage for process heat applications.


Sign in / Sign up

Export Citation Format

Share Document