The Effect of Surfactants on the Flow Patterns in Vertical Air-Water Pipe-Flow

Author(s):  
A. T. van Nimwegen ◽  
L. M. Portela ◽  
R. A. W. M. Henkes

In this work, we consider the influence of surfactants on the flow pattern transitions of air-water flow in vertical pipes. Surfactants cause the formation of foam, which suppresses the irregularities in the flow. Thereby, the foam significantly decreases the gas flow rate associated with the transition between annular and churn flow. Furthermore, this transition is no longer independent of the liquid flow rate, as the foam can more easily suppress the churning at low liquid flow rates. At sufficiently large surfactant concentrations, the foam suppresses all churning, leading to a direct transition between annular and slug flow. Using results from flow visualisation, the effect of the surfactants on the morphology of the different flow patterns is analysed. The results provide important subsidies for a mechanistic model of air-water-foam flow.

Author(s):  
Svetlana Rudyk ◽  
Sami Al-Khamisi ◽  
Yahya Al-Wahaibi

AbstractFactors limiting foam injection for EOR application are exceptionally low rock permeability and exceedingly high salinity of the formation water. In this regard, foam formation using internal olefin sulfonate is investigated over a wide salinity range (1, 5, 8, 10, and 12% NaCl) through 10 mD limestone. The relationships between pressure drop (dP), apparent viscosity, liquid flow rate, total flow rate, salinity, foam texture, and length of foam drops at the outlet used as an indicator of viscosity are studied. Foaming is observed up to 12% NaCl, compared to a maximum of 8% NaCl in similar core-flooding experiments with 50 mD limestone and 255 mD sandstone. Thus, the salinity limit of foam formation has increased significantly due to the low permeability, which can be explained by the fact that the narrow porous system acts like a membrane with smaller holes. Compared to the increasing dP reported for highly permeable rocks, dP linearly decreases in almost the entire range of gas fraction (fg) at 1–10% NaCl. As fg increases, dP at higher total flow rate is higher at all salinities, but the magnitude of dP controls the dependence of apparent viscosity on total flow rate. Low dP is measured at 1% and 10% NaCl, and high dP is measured at 5, 8, and 12% NaCl. In the case of low dP, the apparent viscosity is higher at higher total flow rate with increasing gas fraction, but similar at two total flow rates with increasing liquid flow rate. In the case of high dP, the apparent viscosity is higher at lower total flow rate, both with an increase in the gas fraction and with an increase in the liquid flow rate. A linear correlation is found between dP or apparent viscosity and liquid flow rate, which defines it as a governing factor of foam flow and can be considered when modeling foam flow.


Konversi ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 6
Author(s):  
Erlinda Ningsih ◽  
Abas Sato ◽  
Mochammad Alfan Nafiuddin ◽  
Wisnu Setyo Putranto

Abstract- One of the most widely used processes for CO2 gas removal is Absorption. Carbon dioxide is the result of the fuel combustion process which of the hazardous gases. The aim of this research is to determine the total mass transfer coefficient and analyze the effect of the absorbent flow rate of the absorbent solution with the promoter and the gas flow rate to the total mass transfer coefficient value. The variables consisted of liquid flow rate: 1, 2, 3, 4, 5 liter/min, gas flow rate: 15, 25, 30, 40, 50 liter/min and MSG concentration: 0%, 1%, 3% and 5% by weight. The solution of Pottasium Carbonate as absorbent with MSG promoter is flowed through top column and CO2 gas flowed from bottom packed column. Liquids were analyzed by titration and the gas output was analyzed by GC. From this research, it is found that the flow rate of gas and the liquid flow rate is directly proportional to the value of KGa. The liquid flow rate variable 5 liters / minute, gas flow rate 15 l / min obtained value of KGa 11,1102 at concentration of MSG 5%. Keywords:  Absorption, CO2,  K2CO3, MSG. 


2021 ◽  
pp. 1-14
Author(s):  
T. G. Ahmed ◽  
P. A. Russell ◽  
N. Makwashi ◽  
F. Hamad ◽  
S. Gooneratne

Summary In the first part of this work, the development of a capital cost optimization model for sizing three-phase separators was described. The developed model uses generalized reduced gradient nonlinear algorithms to determine the minimum cost associated with the construction of horizontal separators subject to four sets of constraints. In the second part, an experimental test rig was designed and used to investigate the effect of gas flow rate, liquid flow rate, and slenderness ratio (L/D) on the separation performance of horizontal three-phase separators. The results indicated an inverse relationship between an increase in gas and liquid flow rate and the separator outlet quality. It also indicated a direct relationship between an increase in slenderness ratio and separator outlet quality. The results also showed that the gradient change of the percentage of water in the oil outlet with respect to slenderness ratio decreased to ratios of 6:1. Hence, the separation rate increased. At ratios greater than 6:1, the separation still increases, but the gradient change in separation drops off, implying that the benefit in terms of separation is diminishing beyond this point. Therefore, the optimal slenderness ratio for technical reasons is 6:1.


1994 ◽  
Vol 29 (10-11) ◽  
pp. 231-241 ◽  
Author(s):  
H. T. Chang ◽  
B. E. Rittmann

This paper presents a unified model that inter-relates gas flow rate, liquid flow rate, and hold-ups of each of the liquid, gas, and solid phases in three-phase, fluidized-bed biofilm (TPFBB) process. It describes how carrier properties, biofilm properties, and gas and liquid flow velocities control the system dynamics, which ultimately will affect the density, thickness, and distribution of the biofilm. The paper describes the development of the mathematical model to correlate the effects of gas flow rate, liquid flow rate, solid concentration, and biofilm thickness and density. This knowledge is critically needed in light of the use of TPFBB processes in treating industrial wastewater, which often has high substrate concentration. For example, the proper design of the TPFBB process requires mathematical description of the cause-effect relationship between biofilm growth and fluidization.


2011 ◽  
Vol 383-390 ◽  
pp. 4922-4927
Author(s):  
Peng Xia Xu ◽  
Yan Feng Geng

Wet gas flow is a typical two-phase flow with low liquid fractions. As differential pressure signal contains rich information of flow parameters in two-phase flow metering, a new method is proposed for wet gas flow metering based on differential pressure (DP) and blind source separation (BSS) techniques. DP signals are from a couple of slotted orifices and the BSS method is based on time-frequency analysis. A good relationship between the liquid flow rate and the characteristic quantity of the separated signal is established, and a differential pressure correlation for slotted orifice is applied to calculate the gas flow rate. The calculation results are good with 90% relative errors less than ±10%. The results also show that BSS is an effective method to extract liquid flow rate from DP signals of wet gas flow, and to analysis different interactions among the total DP readings.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Antonio Reinoso ◽  
Luis E. Gomez ◽  
Shoubo Wang ◽  
Ram S. Mohan ◽  
Ovadia Shoham ◽  
...  

This study investigates theoretically and experimentally the slug damper as a novel flow conditioning device, which can be used upstream of compact separation systems. In the experimental part, a 3 in. ID slug damper facility has been installed in an existing 2 in. diameter two-phase flow loop. This flow loop includes an upstream slug generator, a gas-liquid cylindrical cyclone (GLCC©, ©The University of Tulsa, 1994) attached to the slug damper downstream and a set of conductance probes for measuring the propagation of the dissipated slug along the damper. Over 200 experimental runs were conducted with artificially generated inlet slugs of 50 ft length (Ls/d=300) that were dumped into the loop upstream of the slug damper, varying the superficial liquid velocity between 0.5 ft/s and 2.5 ft/s and superficial gas velocity between 10 ft/s and 40 ft/s (in the 2 in. inlet pipe) and utilizing segmented orifice opening heights of 1 in., 1.5 in., 2 in., and 3 in. For each experimental run, the measured data included propagation of the liquid slug front in the damper, differential pressure across the segmented orifice, GLCC liquid level, GLCC outlet liquid flow, and static pressure in the GLCC. The data show that the slug damper/GLCC system is capable of dissipating long slugs, narrowing the range of liquid flow rate from the downstream GLCC. Also, the damper capacity to process large slugs is a strong function of the superficial gas velocity (and mixture velocity). The theoretical part includes the development of a mechanistic model for the prediction of the hydrodynamic flow behavior in the slug damper. The model enables the predictions of the outlet liquid flow rate and the available damping time, and in turn the prediction of the slug damper capacity. Comparison between the model predictions and the acquired data reveals an accuracy of ±30% with respect to the available damping time and outlet liquid flow rate. The developed model can be used for design of slug damper units.


1989 ◽  
Vol 8 (2) ◽  
pp. 63-68
Author(s):  
A. J. Rautenbach ◽  
G. Kornelius

Spray columns are widely used in industry as a gas-liquid contacting apparatus because of the advantages of a high transfer area per unit volume and the tow gas side resistance. For a large number of systems, mass transfer parameters are not available and an experimental determination for the system benzene/wash oil was therefore carried out. The experimental technique and design are described. The variation in mass transfer coefficient as function of gas flow rate, liquid flow rate and column height agrees with those published elsewhere.


Nowadays, CO2 as the product of fossil fuel combustions, is polluting the air and the human environment, and it causes global warming. To reduce the negative effect of CO2 presence, it should be removed from the air by capturing methods. Hollow fiber membrane contactor (HFMC) system is one of the most efficient method for CO2 capturing than the other feasible capturing methods. In the present paper an HFMC absorbing system has been simulated using COMSOL Multiphysics software and the effect of flow rates of gas and liquid on the amount of CO2 removal has been studied. Aqueous solution of Mono-ethanolamine (MEA) is entered as the absorbent liquid in the tubes, and CO2 is removed from the shell side by the diffusion phenomena by participating in the chemical reaction with MEA. The results show that the higher liquid flow rate the higher %CO2 removal from the inserted gas. Against this result, the percentage of CO2 removal decreases with increasing the gas flow rate as expected. Higher gas flow rate leads the gas velocity to higher values and less possibility of absorbing by the diffusion method. The rate of the CO2 removal variation with liquid flow rate is higher than the CO2 removal variation whit the gas flow rate.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 135
Author(s):  
Zhenmin Cheng ◽  
Gang Luo ◽  
Yanling Tang ◽  
Dan Ling ◽  
Zhaoxuan Chen ◽  
...  

Films and rivulets are the two basic forms of dynamic liquid in a three-phase fixed bed (trickle bed), which determines the wetting efficiency of the catalyst. This paper is devoted to the conflicting wetting performance observed between non-porous glass beads and porous alumina pellets, and a parallel zone model is applied to resolve the complex liquid flow texture. This shows that in the case of glass beads, the wetting efficiencies of the catalyst along with the liquid flow rate in increasing and decreasing branches are different, especially when the gas flow rate is low. In comparison, there is almost no wetting difference for the alumina pellets with respect to liquid flow rate increasing or decreasing. The dynamic liquid is significantly more uniformly distributed over the cross-section in the Al2O3 bed than in the glass one.


Author(s):  
Rinaldo Antonio de Melo Vieira ◽  
Mauricio Gargaglione Prado

The effect of free gas on the Electrical Submersible Pump (ESP) performance is well known. At a constant rotational speed and constant liquid flowrate, small amount of gas causes a mild head reduction when compared to the single phase liquid head. However, at higher gas rates, a drastic reduction in the head is observed. This critical condition, known as surging point, is a combination of liquid and gas flow rates that cause a maximum in the head performance curve. The first derivative of the head with respect to the liquid flow rate change sign as the liquid flow rate crosses the surging point. In several works on ESP two-phase flow performance, production conditions to the left of the surging region are described or reported as unstable operational conditions. This paper reviews basic concepts on stability of dynamical systems and shows through simulation that ESP oscillatory behavior may result from two-phase flow conditions. A specific drift flux computation code was developed to simulate the dynamic behavior of ESP wells producing without packer.


Sign in / Sign up

Export Citation Format

Share Document