Turbine Blade Tip Clearance Measurement Instrumentation

Author(s):  
Eric B. Holmquist ◽  
Peter L. Jalbert

New and future gas turbine engines are being required to provide greater thrust with improved efficiency, while simultaneously reducing life cycle operating costs. Improved component capabilities enable active control methods to provide better control of engine operation with reduced margin. One area of interest is a means to assess the relative position of rotating machinery in real-time, in particular hot section turbo machinery. To this end, Hamilton Sundstrand is working to develop a real-time means to monitor blade position relative to the engine static structure. This approach may yield other engine operating characteristics useful in assessing component health, specifically measuring blade tip clearance, time-of-arrival, and other parameters. UTC is leveraging its many years of experience with engine control systems to develop a microwave-based sensing device, applicable to both military and commercial engines. The presentation will discuss a hot section engine demonstration of a blade position monitoring system and the control system implications posed by a microwave-based solution. Considerations necessary to implement such a system and the challenges associated with integrating a microwave-based sensor system into an engine control system are discussed.

Author(s):  
A. Keshavarz ◽  
K. S. Chapman ◽  
J. Shultz ◽  
D. G. Kuiper

Rising fuel costs and increasingly stringent emission standards push engineers to develop more efficient turbo-machinery. Reducing turbocharger turbine tip clearance is one method of improving turbine performance, thereby improving overall engine operation. By using tip seals or abradable seals, reduction of this clearance is possible. Metco 314 NS material was applied to an Elliot-H type turbocharger turbine shroud to reduce the cold clearance from 0.762 mm (0.030 inch) to 0.457mm (0.018 inch). Two separate yet virtually identical performance tests were conducted at speeds of 13,000 rpm, 15,000 rpm, and 17,000 rpm on the turbocharger. The first test established the efficiency condition of the turbocharger with the tip seal installed. The second was to quantify a decrease in efficiency, if present, after the tip seal was removed. Both tests were conducted as identically as possible. The average amount of available energy not utilized with the tip seal removed was 30.26 kW at 13,000 rpm, 51.42 kW at 15,000 rpm and 45.71 kW at 17,000 rpm.


Author(s):  
Weimin Wang ◽  
Huajin Shao ◽  
Xing Shao ◽  
Kailiang Song

Blade tip clearance (BTC) measurement and active clearance control (ACC) have been and continue to be a fundamental concern in turbomachinery, which are closely bound up with the efficiency and reliability. This paper addresses the BTC measurement and ACC experimental study based on eddy current pulse-trigger method (ECPTM). And the implementation of ACC by axial displacement of the blisk is novel and this paper is the first to present the technique. The purpose of this paper is three fold. The first portion of this paper addresses the BTC measurement in different rotating speeds based on the larger scale rig, where a high-bandwidth (100 kHz) eddy current sensor (HECS) is employed. The results show that the relative errors of BTC values are not much bigger than 20%. The result indicates that ECPTM is more generally applicable in the condition where the eddy current sensor (ECS) is insufficient sampling caused by the limit of narrow bandwidth, especially under the high linear velocity condition. The second portion of this paper describes the ACC system where an electro-hydraulic proportional position control system (EHPPCS) is employed as the actuator. EHPPCS has the advantages of small size, fast response, resistance to load stiffness, large output and simple operation, which is widely applicable to the automatic control system of industrial power. This system optimizes the geometry shapes of casing and the blade tips to create a linear relationship of BTC values related to the axial displacement of the rotor. The BTC values can be transferred into axial displacement of the rotor, and then a voltage/current-BTC values characteristic can be obtained by employing EHPPCS in different rotating speeds. Unfortunately, one of the core components of EHPPCS is an overflow valve with a non-linear and time-variable voltage/current-pressure characteristic. Besides, the pressure-axial displacement characteristic of tilting pad thrust bearing is also non-linear. All those non-linear characteristics make it unsatisfactory to use the conventional PID control algorithm to achieve effective control of the system, which cause many difficulties in controlling of axial displacement of the rotor. So the last portion of this paper is the experimental study on ACC based on the above system by adopting sliding mode adaptive control of nonlinear system (SMACNS). The BTC values have been obtained under different outlet pressures by changing the current in different rotating speeds. The results indicate that this approach has nice robustness and smooth controlled quantity, and can overcome the difficulty caused by nonlinearity, parameter uncertainty and load disturbance. And then, the precision verification and error analysis are made. However, this work is a proof-of-concept demonstration using a laboratory setup providing the basis for BTC active control and blade health monitoring (BHM) based on ECS.


1980 ◽  
Vol 102 (4) ◽  
pp. 912-917 ◽  
Author(s):  
M. J. Scotto ◽  
M. E. Eismeier

This paper discusses high-speed, noncontacting instrumentation systems for measuring the operating characteristics of jet engines. The discussion includes optical pyrometers for measuring blade surface temperatures, capacitance clearanceometers for measuring blade tip clearance and vibration, and optoelectronic systems for measuring blade flex and torsion. In addition, engine characteristics that mandate the use of such unique instrumentation are pointed out as well as the shortcomings of conventional noncontacting devices. Experimental data taken during engine testing are presented and recommendations for future development discussed.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3552 ◽  
Author(s):  
Chun-Yi Zhang ◽  
Jing-Shan Wei ◽  
Ze Wang ◽  
Zhe-Shan Yuan ◽  
Cheng-Wei Fei ◽  
...  

To reveal the effect of high-temperature creep on the blade-tip radial running clearance of aeroengine high-pressure turbines, a distributed collaborative generalized regression extremum neural network is proposed by absorbing the heuristic thoughts of distributed collaborative response surface method and the generalized extremum neural network, in order to improve the reliability analysis of blade-tip clearance with creep behavior in terms of modeling precision and simulation efficiency. In this method, the generalized extremum neural network was used to handle the transients by simplifying the response process as one extremum and to address the strong nonlinearity by means of its nonlinear mapping ability. The distributed collaborative response surface method was applied to handle multi-object multi-discipline analysis, by decomposing one “big” model with hyperparameters and high nonlinearity into a series of “small” sub-models with few parameters and low nonlinearity. Based on the developed method, the blade-tip clearance reliability analysis of an aeroengine high-pressure turbine was performed subject to the creep behaviors of structural materials, by considering the randomness of influencing parameters such as gas temperature, rotational speed, material parameters, convective heat transfer coefficient, and so forth. It was found that the reliability degree of the clearance is 0.9909 when the allowable value is 2.2 mm, and the creep deformation of the clearance presents a normal distribution with a mean of 1.9829 mm and a standard deviation of 0.07539 mm. Based on a comparison of the methods, it is demonstrated that the proposed method requires a computing time of 1.201 s and has a computational accuracy of 99.929% over 104 simulations, which are improvements of 70.5% and 1.23%, respectively, relative to the distributed collaborative response surface method. Meanwhile, the high efficiency and high precision of the presented approach become more obvious with the increasing simulations. The efforts of this study provide a promising approach to improve the dynamic reliability analysis of complex structures.


Author(s):  
Patrick H. Wagner ◽  
Jan Van herle ◽  
Lili Gu ◽  
Jürg Schiffmann

Abstract The blade tip clearance loss was studied experimentally and numerically for a micro radial fan with a tip diameter of 19.2mm. Its relative blade tip clearance, i.e., the clearance divided by the blade height of 1.82 mm, was adjusted with different shims. The fan characteristics were experimentally determined for an operation at the nominal rotational speed of 168 krpm with hot air (200 °C). The total-to-total pressure rise and efficiency increased from 49 mbar to 68 mbar and from 53% to 64%, respectively, by reducing the relative tip clearance from 7.7% to the design value of 2.2%. Single and full passage computational fluid dynamics simulations correlate well with these experimental findings. The widely-used Pfleiderer loss correlation with an empirical coefficient of 2.8 fits the numerical simulation and the experiments within +2 efficiency points. The high sensitivity to the tip clearance loss is a result of the design specific speed of 0.80, the highly-backward curved blades (17°), and possibly the low Reynolds number (1 × 105). The authors suggest three main measures to mitigate the blade tip clearance losses for small-scale fans: (1) utilization of high-precision surfaced-grooved gas-bearings to lower the blade tip clearance, (2) a mid-loaded blade design, and (3) an unloaded fan leading edge to reduce the blade tip clearance vortex in the fan passage.


Author(s):  
A. G. Sheard ◽  
B. Killeen

It is difficult to make a reliable measurement of running clearance in the hostile environment over the blading of a modern gas turbine. When engine manufacturers require the measurement to be made over every blade during live engine tests, system reliability, ruggedness and ease of operation are of primary importance. This paper describes a tip clearance measurement system that can measure clearance over every blade around a rotor. The measurement system concept is presented, and the system design described in detail. Commissioning of the measurement system on a compressor test facility, and the results obtained are discussed. An analysis of system performance during the commissioning trials concludes the paper.


Sign in / Sign up

Export Citation Format

Share Document