Volume 8: Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine; Microturbines, Turbochargers, and Small Turbomachines
Latest Publications


TOTAL DOCUMENTS

56
(FIVE YEARS 56)

H-INDEX

0
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791884195

Author(s):  
Kewei Xu ◽  
Gecheng Zha

Abstract This paper investigates the recirculating casing treatment (RCT) of a low total pressure ratio micro-compressor to achieve stall margin enhancement while minimizing the design point efficiency penalty. Three RCT injection and extraction configurations are studied, including combined slot-duct, ducts only, and slot only. The numerical approach is validated with a tested micro-compressor using RCT. A very good agreement is achieved between the predicted speedlines and the measured results. To minimize the design point efficiency loss, it is observed that the optimal location of extraction and injection is where the recirculated flow rate can be minimized at the design point. To maximize stall margin, extraction location should favor minimizing the tip blockage such as at the location where the tip flow separation of the baseline blade is fully developed. In addition, the slot configuration that generates pre-swirl to the upstream flow is beneficial to improve stall margin due to reduced incidence. The highest stall margin enhancement achieved is 9.49% with the slot geometry that has the extraction at the 62%C chordwise location, but has a design point efficiency loss of 1.9%. Overall, a small efficiency penalty of 0.6% at the design point is achieved for the final design with the stall margin increased by 6.2%.


Author(s):  
Patrick H. Wagner ◽  
Jan Van herle ◽  
Lili Gu ◽  
Jürg Schiffmann

Abstract The blade tip clearance loss was studied experimentally and numerically for a micro radial fan with a tip diameter of 19.2mm. Its relative blade tip clearance, i.e., the clearance divided by the blade height of 1.82 mm, was adjusted with different shims. The fan characteristics were experimentally determined for an operation at the nominal rotational speed of 168 krpm with hot air (200 °C). The total-to-total pressure rise and efficiency increased from 49 mbar to 68 mbar and from 53% to 64%, respectively, by reducing the relative tip clearance from 7.7% to the design value of 2.2%. Single and full passage computational fluid dynamics simulations correlate well with these experimental findings. The widely-used Pfleiderer loss correlation with an empirical coefficient of 2.8 fits the numerical simulation and the experiments within +2 efficiency points. The high sensitivity to the tip clearance loss is a result of the design specific speed of 0.80, the highly-backward curved blades (17°), and possibly the low Reynolds number (1 × 105). The authors suggest three main measures to mitigate the blade tip clearance losses for small-scale fans: (1) utilization of high-precision surfaced-grooved gas-bearings to lower the blade tip clearance, (2) a mid-loaded blade design, and (3) an unloaded fan leading edge to reduce the blade tip clearance vortex in the fan passage.


Author(s):  
Xiao Huang

Abstract In this study, the microstructure and solidus and liquidus of several Ni-Co-Hf-Zr-Ti-Al braze alloys were first examined with the objective to develop a B and Si free low melting braze alloy for narrow gap (NGB) and wide gap brazing (WGB) and turbine component repair applications. Among various alloys examined, DSC was used to measure the solidus and liquidus during heating and cooling cycles. Following the measurements of liquidus and solidus, the microstructure was evaluated using SEM. Equations for calculating solidus and liquidus based on alloy’s compositions were established and the functions of each elements on these two characteristic temperatures were discussed. One selected alloy with a liquidus of 1201 °C was further employed for NGB and WGB experiments. The results showed that it was able join CMSX-4 at 1240°C without interfacial voids; and with the use of externally applied pressure and extended homogenization treatment the interfacial intermetallic compounds were substantially removed. Furthermore, the same braze alloy was used to fill a large artificial cavity in a WGB scheme at a reduced temperature of 1200°C. The braze alloy was able to fully bond the filler powder alloy in addition to join the two alloys to a IN 738 substrate. Finally, oxidation test was conducted at 1050°C (isothermal in static air) for 100 hours after NGB of CMSX-4 and WGB of IN 738. The results showed that the oxide formed on the standalone braze alloy is very dense and there is no sign of spallation. It contained primarily NiO (+CoO) with no other elements measured. For the NGB joints, large amount of scale spallation was observed on base alloy CMSX-4 while the NGB joint remained spallation free. The oxide formed on the NGB was NiO with partitions of Co, Al, Ti, Cr, and W. The WGB joint region in IN 738 showed oxide scale spallation on the IN 738 substrate side, leaving behind steps and depression on the sample surface. In the WGB joint itself, there were three notable phases after oxidation test, however, no scale spallation could be found. For the majority part of the surface, a Ni-rich oxide covered the surface. There were areas of smaller oxide particles with higher Cr content. Overall, the new boron/silicon free braze alloy was found to be able to join several superalloys in both WGB and NGB schemes without occurrence of defects and the oxidation resistance was superior to both substrate alloys examined in this study.


Author(s):  
Richard Livings ◽  
Nick Smith ◽  
Eric Biedermann ◽  
John Scheibel

Abstract The metallurgical aspects of turbomachinery components, both during manufacture and service intervals, are of particular interest because they dictate performance, degradation, and probability of defect formation. As certaining the microstructural state without destructive cut-ups is difficult. Nondestructive methods such as x-ray diffraction or ultrasonic testing can provide some amount of metallurgical characterization but are limited to surface measurements or point-by-point inspections. Ultrasonic Resonance methods such as Process Compensated Resonance Testing (PCRT) can greatly supplement the inspection and qualification of Industrial Gas Turbine (IGT) blades. The resonance information collected from a component forms a resonance fingerprint, which is dependent on the material, microstructure, geometry, and the presence of defects. PCRT is an established Nondestructive Testing (NDT) method that has seen extensive use in the aerospace industry for both the detection of damage/defects and undesirable microstructural deviations. This experience from aerospace applications can be leveraged for improved metallurgical inspection methodologies in the power generation industry. Here we present and discuss several PCRT case studies from the aerospace industry as well as early PCRT experiences from power generation. Ongoing and upcoming work is also briefly discussed.


Author(s):  
Cedric Devriese ◽  
Gijs Penninx ◽  
Guido de Ruiter ◽  
Rob Bastiaans ◽  
Ward De Paepe

Abstract Against the background of a growing deployment of renewable electricity production, like wind and solar, the demand for energy storage will only increase. One of the most promising ways to cover the medium to long-term storage is to use the excess electricity to produce hydrogen via electrolysis. In a modern energy grid, filled with intermittent power sources and ever-increasing problems to construct large power plants in densely populated areas, a network of Decentralised Energy Systems (DES) seems more logical. Therefore, the importance of research into the design of a small to medium-sized hydrogen fuelled micro Gas Turbine (mGT) unit for efficient, local heat and electricity production becomes apparent. To be able to compete with Reciprocating Internal Combustion Engines (RICEs), the mGT needs to reach 40% electrical efficiency. To do so, there are two main challenges; the design of an ultra-low NOX hydrogen combustor and a high Turbine Inlet Temperature (TIT) radial turbine. In this paper, we report on the progress of our work towards that goal. First, an improvement of the initial single-nozzle swirler (swozzle) combustor geometry was abandoned in favour of a full CFD (steady RANS) design and optimisation of a micromix type combustion chamber, due to its advantages towards NOx-emission reduction. Second, a full CFD design and optimisation of the compressor and turbine is performed. The improved micromix combustor geometry resulted in a NOx level reduction of more than 1 order of magnitude compared to our previous swozzle design (from 1400 ppm to 250 ppm). Moreover, several design parameters, such as the position and diameter of the hydrogen injection nozzle and the Air Guiding Panel (AGP) height, have been optimized to improve the flow patterns. Next to the combustion chamber, CFD simulations of the compressor and turbine matched the 1D performance calculations and reached the desired performance goals. A CFD analysis of the impact of the tip gap and exhaust diffuser cone angle led to a choice of these parameters that improved the compressor and turbine performance with a limited loss in efficiency.


Author(s):  
M. A. Ancona ◽  
M. Bianchi ◽  
L. Branchini ◽  
A. De Pascale ◽  
F. Melino ◽  
...  

Abstract In order to increase the exploitation of the renewable energy sources, the diffusion of the distributed generation systems is grown, leading to an increase in the complexity of the electrical, thermal, cooling and fuel energy distribution networks. With the main purpose of improving the overall energy conversion efficiency and reducing the greenhouse gas emissions associated to fossil fuel based production systems, the design and the management of these complex energy grids play a key role. In this context, an in-house developed software, called COMBO, presented and validated in the Part I of this study, has been applied to a case study in order to define the optimal scheduling of each generation system connected to a complex energy network. The software is based on a non-heuristic technique which considers all the possible combination of solutions, elaborating the optimal scheduling for each energy system by minimizing an objective function based on the evaluation of the total energy production cost and energy systems environmental impact. In particular, the software COMBO is applied to a case study represented by an existing small-scale complex energy network, with the main objective of optimizing the energy production mix and the complex energy networks yearly operation depending on the energy demand of the users. The electrical, thermal and cooling needs of the users are satisfied with a centralized energy production, by means of internal combustion engines, natural gas boilers, heat pumps, compression and absorption chillers. The optimal energy systems operation evaluated by the software COMBO will be compared to a Reference Case, representative of the current energy systems set-up, in order to highlight the environmental and economic benefits achievable with the proposed strategy.


Author(s):  
Alessio Pappa ◽  
Laurent Bricteux ◽  
Pierre Bénard ◽  
Ward De Paepe

Abstract Considering the growing interest in Power-to-Fuel, i.e. production of H2 using electrolysis to store excess renewable electricity, combustion-based technologies still have a role to play in the future of power generation. Especially in a decentralized production with small-scale cogeneration, micro Gas Turbines (mGTs) offer great advantages related to their high adaptability and flexibility, in terms of operation and fuel. Hydrogen (or hydrogen enriched methane) combustion is well-known to lead to flame and combustion instabilities. The high temperatures and reaction rates reached in the combustor can potentially lead to flashback. In the past, combustion air humidification (i.e. water addition) has proven effective to reduce temperatures and reaction rates, leading to significant NOx emission reductions. Therefore, combustion air humidification can open a path to stabilize hydrogen combustion in a classical mGT combustor. However accurate data assessing the impact of humidification on the combustion is still missing for real mGT combustor geometries and operating conditions. In this framework, this paper presents a comparison between pure methane and hydrogen enriched methane/air combustions, with and without combustion air humidification, in a typical mGT combustion chamber (Turbec T100) using Large Eddy Simulations (LES) analysis. In a first step, the necessary minimal water dilution, to reach stable and low emissions combustion with hydrogen, was assessed using a 1D approach. The one-dimensional unstretched laminar flame is computed for both pure methane (reference case) and hydrogen enriched methane/air combustion cases. The results of this comparison show that, for the hydrogen enriched combustion, the same level of flame speed as in the reference case can be reached by adding 10% (in mass fraction) of water. In a second step, the feasibility and flexibility of humidified hydrogen enriched methane/air combustion in an industrial mGT combustor have been demonstrated by performing high fidelity LES on a 3D geometry. Results show that steam dilution helped to lower the reactivity of hydrogen, and thus prevents flashback, enabling the use of hydrogen blends in the mGT at similar CO levels, compared to the reference case. These results will help to design future combustor towards more stability.


Author(s):  
Marek Cichocki ◽  
Ilona Salamonik ◽  
Marcin Bielecki ◽  
Ever Fadlun ◽  
Artur Rusowicz

Abstract The typical combined heat and power plants requires the introduction of additional heating medium. The alternative solution is the direct integration of the exhaust gases from heat engine. High temperature, surplus oxygen and low water content of the Gas Turbines exhaust gases enabled the successful integration at industrial scale as: preheated combustion air for industrial furnaces, heat source for drying and for absorption chillers. The article comprises the reference list for direct exhaust gas integration of GTs produced by Baker Hughes formerly GE), the processes overview, GTs selection criteria, as well as the review of documented GTs applications in process industry focusing on technical and economic considerations. Majority of referenced applications for industrial furnace are in the steam methane reformers used in fertilizer industry, as well as steam crackers in petrochemical industries. Several GTs were integrated with crude oil furnace in refinery. Direct drying utilizing exhaust gas from GT, is commonly applied in ceramic, wood derivative, pulp & paper and inorganic chemicals industries. Integrating GTs with absorption chillers was introduced to serve the district heating and cooling system. The described solutions allowed to reduce specific energy consumption by 7–20% or the costs of energy consumption associated with large volume production by 15–30%. The reduction of specific energy consumption allows to decrease the amount of CO2 emitted. The overall efficiency of cogeneration plant above 90% was achieved.


Author(s):  
Ziyang Cheng ◽  
Yaxiong Wang ◽  
Qingxuan Sun ◽  
Jiangfeng Wang ◽  
Pan Zhao ◽  
...  

Abstract This paper proposes a novel cogeneration system based on Kalina cycle and absorption refrigeration system to meet the design requirements of China State Shipbuilding Corporation, which is efficiently satisfy the power and cooling demands of a maritime ship at the same time. Unlike most of the combined systems, this cogeneration system is highly coupled and realizes cogeneration without increasing the system complexity too much. The basic ammonia mass fraction of this novel system is increased, so that the ammonia concentration of ammonia-water steam from the separator can be higher, which contributes to lower refrigerating temperature and thus less heat loss in the distillation process. In addition, higher ammonia concentration solution makes overheating easier, which improves the thermal efficiency. Moreover, the system has two recuperators to make further improvement of the thermal efficiency. Thermodynamic models are developed to investigate the system performance and parametric analysis is conducted to figure out the effects of including working fluid temperature at the outlet of the evaporator, working fluid temperature at superheater outlet, mass fraction of ammonia in basic solution, turbine inlet pressure, temperature of cooling water at the inlet of condensers and the refrigeration evaporation temperature on the system performance. Furthermore, the cogeneration system is optimized with genetic algorithm to obtain the best performance, which achieves 333.00kW of net power output, 28.83 kW of cooling capacity and 21.81% of thermal efficiency. Finally, the performance of the proposed system is compared with an optimized recuperative organic Rankine cycle (ORC) system and an optimized Kalina cycle system 34 (KCS34) using the same heat source. The results show that the thermal efficiency and power output of the novel cogeneration system is 3.89% and 1.05% higher than that of the recuperative ORC system and KCS34 system respectively.


Author(s):  
Azam Thatte ◽  
Ganesh Vurimi ◽  
Prabhav Borate ◽  
Teymour Javaherchi

Abstract A neural network based method is developed that can learn the underlying physics of hydraulic turbocharger (a radial pump coupled with a radial turbine) from a set of sparse experimental data and can predict the performance of a new turbocharger design for any given set of previously unseen operating conditions and geometric parameters. The novelty of the algorithm is that it learns the underlying physical mechanisms from a very sparse data spanning a broad range of flow rates and geometrical size brackets and uses these deeper common features recognized through a “mass-learning process” to predict the full performance curves for any given single geometry. The deep learning algorithm is able to accurately predict the key performance parameters like total efficiency of the turbocharger, its operating speed, pressure rise provided by the radial pump of the turbocharger and the shaft power produced by the radial turbine of the turbocharger for any given input combination of pump and turbine flow rates, differential pressure across the turbine and a limited set of geometrical parameters of pump and turbine impellers and volutes. Lastly, a novel method for fast inverse design of turbomachinery using a physics trained neural network and a constrained optimization algorithms is developed. The algorithm uses Nelder-Mead and Interior Point methods to find the global minimum of turbocharger design objective function in multi-dimensional space. The newly developed method is found to be very efficient in optimizing turbomachinery design problems with both equality and inequality constraints. The inverse design algorithm is able to successfully recommend an optimal combination of geometrical parameters like pump blade exit angle, pump impeller diameter, blade width, eye diameter, turbine nozzle diameter and rotational speed for a given target efficiency and head rise requirements. The preliminary results from this study indicate that it has a great potential to minimize the need for expensive 3D CFD based methods for the design of turbomachinery.


Sign in / Sign up

Export Citation Format

Share Document