CFD Aerodynamic Performance Validation of a Two-Stage High Pressure Turbine
In the continual effort to improve analysis and design techniques, Honeywell is investigating on the use of CFD to predict the aerodynamic performance of a high pressure turbine. The present study has a two fold objective. The first objective is to validate the commercially available CFD codes for aerodynamic performance prediction of a two-stage high pressure turbine at design and off-design points. The other objective is to establish guidelines to help the designer to successfully.set-up and execute the suitable CFD model analysis. The validation to model the stage interfaces is performed with three different types of approaches such as Mixing Plane approach, Frozen Rotor approach and NonLinear Harmonic approach. The film holes on the blade surface, hub and the shroud walls are modeled by using source term cooling and actual film hole modeling techniques for all the analysis. The validation is accomplished with the test results of a two-stage high pressure turbine, Energy Efficient Engine (E3). The aerodynamic performance data at a design point and typical off-design point are taken as test cases for the validation study. One dimensional performance parameters such as corrected mass flow rate, total pressure ratio, cycle efficiency along with two dimensional spanwise distribution of total pressure, total temperature which are obtained from CFD results are compared with test data. Flow field results are presented to understand the aerodynamic behavior.