Steady State and Transient CFD Studies on Aerodynamic Performance Validation of a High Pressure Turbine
With the advent of fast computers and availability of less costly memory resources, computational fluid dynamics (CFD) has emerged as a powerful tool for the design and analysis of flow and heat transfer of high pressure turbine stages. CFD gives an insight in to flow patterns that are difficult, expensive or impossible to study using experimental techniques. However, the application of CFD depends on its accuracy and reliability. This requires the CFD code to be validated with laboratory measurements to ensure its predictive capacity. In the continual effort to improve analysis and design techniques, Honeywell has been investigating in the use of CFD to predict the aerodynamic performance of a high pressure turbine. Reynolds Averaged Navier Stokes (RANS), unsteady models like detached eddy simulation (DES), large eddy simulation (LES), and Scale Adaptive Simulation (SAS) are used to predict the aerodynamic performance of a high pressure turbine. Mixing plane approach is used to address the flow data transport across the stationary interface in RANS simulation. The film holes on blade surface and end walls for all the analysis are modeled by using actual film hole modeling technique. The validation is accomplished with the test results of a high pressure turbine, Energy Efficient Engine (E3). The aerodynamic performance data at design point, typical off-design points are taken as test cases for the validation study. One dimensional performance parameters such as corrected mass flow rate, total pressure ratio, cycle efficiency, and two dimensional spanwise distributions of total pressure, total temperature and flow angle that are obtained from CFD results are compared with test data. Streamlines and flow field results at different measurement planes are presented to understand the aerodynamic behavior.