Numerical Analysis of Honeycomb Labyrinth Seals: Cell Geometry and Fin Tip Thickness Impact on the Discharge Coefficient

Author(s):  
Alessio Desando ◽  
Andrea Rapisarda ◽  
Elena Campagnoli ◽  
Roberto Taurino

The design of the newest aircraft propulsion systems is focused on environmental impact reduction. Extensive research is being carried out with the purpose of improving engine efficiency, enhancing crucial features, in order to decrease both fuel consumption and pollutant emissions. A lot of improvements to fulfill these objectives must be made, focusing on the optimization of the main engine parts through the utilization of new technologies. The leakage flow reduction in the turbo machinery rotor-stator interaction is one of the main topics to which numerous efforts are being devoted. Labyrinth seals, widely employed in the aerospace field thanks to their simple assembly process and maintenance, can be the means to achieve these objectives. This paper mainly focuses on the optimization of the labyrinth seal stator part, characterized, in modern Low Pressure Turbines (LPT), by a honeycomb cell pattern. The first phase of this study deals with the implementation and validation of a Computational Fluid Dynamics (CFD) numerical model, by using the experimental data available in the literature. Discharge coefficients obtained by numerical simulations, performed at different clearances and pressure ratios on both smooth and honeycomb non-rotating labyrinth seals, are presented and compared to the literature data. Then, for both convergent and divergent flow conditions, the effects on the discharge coefficient due to variations in several cell pattern parameters (i.e. cell diameter, depth and wall thickness) and fin tip thickness are shown. For these analyses the values of clearance and pressure ratio are set at a constant value.

Author(s):  
Xin Yan ◽  
Jun Li ◽  
Zhenping Feng

Three-dimensional Reynolds-averaged Navier–Stokes solutions are employed to investigate the discharge and total temperature increase characteristics of the stepped labyrinth seal with honeycomb land. First, the relations between the windage heating number and the circumferential Mach number at different Reynolds numbers for different honeycomb seals are calculated and compared with the experimental data. The obtained numerical results show that the present three-dimensional periodic model can properly predict the total temperature increase in honeycomb seals. Then, a range of pressure ratios, three inlet preswirl ratios, four sizes of honeycomb cell diameter, and nine sizes of cell depth are selected to investigate the influence of inlet preswirl ratios and honeycomb geometry sizes on the discharge and total temperature increase characteristics of the stepped labyrinth seal. It shows that the leakage rate increases with the increase in cell diameter, and the cell depth has a strong influence on the discharge behavior. However, the influence of the inlet preswirl on the leakage rate is found to be little in the present study. For the total temperature increase characteristic, the inlet preswirl ratio and pressure ratio have more pronounced influence than those of cell depth and diameter. Furthermore, the relations between the leakage rate and cell depth and diameter, as well as the relations between the windage heating power and cell depth and diameter, are not monotonic functions if the pressure ratio is kept constant.


Author(s):  
Luis San Andrés ◽  
Tingcheng Wu ◽  
Jose Barajas-Rivera ◽  
Jiaxin Zhang ◽  
Rimpei Kawashita

Abstract Gas labyrinth seals (LS) restrict secondary flows (leakage) in turbomachinery and their impact on the efficiency and rotordynamic stability of high-pressure compressors and steam turbines can hardly be overstated. Amongst seal types, the interlocking labyrinth seal (ILS), having teeth on both the rotor and on the stator, is able to reduce leakage up to 30% compared to other LSs with either all teeth on the rotor or all teeth on the stator. This paper introduces a revamped facility to test gas seals for their rotordynamic performance and presents measurements of the leakage and cavity pressures in a five teeth ILS. The seal with overall length/diameter L/D = 0.3 and small tip clearance Cr/D = 0.00133 is supplied with air at T = 298 K and increasing inlet pressure Pin = 0.3 MPa ∼ 1.3 MPa, while the exit pressure/inlet pressure ratio PR = Pout/Pin is set to range from 0.3 to 0.8. The rotor speed varies from null to 10 krpm (79 m/s max. surface speed). During the tests, instrumentation records the seal mass flow (ṁ) and static pressure in each cavity. In parallel, a bulk-flow model (BFM) and a computational fluid dynamics (CFD) analysis predict the flow field and deliver the same performance characteristics, namely leakage and cavity pressures. Both measurements and predictions agree closely (within 5%) and demonstrate the seal mass flow rate is independent of rotor speed. A modified flow factor Φ¯=m.T/PinD1-PR2 characterizes best the seal mass flow with a unique magnitude for all pressure conditions, Pin and PR.


Author(s):  
Karl E. Uth ◽  
Edward G. Dong

This paper presents the feasibility of using advanced aerodynamic sealing systems to replace aged labyrinth seals in gas & steam turbines for the electric power generating and aerospace industry. Focus is on promoting new technologies in the power generating industry to reduce pollutant emissions.


Author(s):  
Dan Sun ◽  
Shuang Wang ◽  
Cheng-Wei Fei ◽  
Yan-Ting Ai ◽  
Ke-Ming Wang

Swirl brake influences the static and rotordynamic characteristics of labyrinth seal which are important in the prediction of turbomachine stability. To study the influence of the swirl brakes on improving seal stability, the effects of swirl brakes on the static and rotordynamic characteristics of labyrinth seals were investigated by the combination of numerical simulation and experiment. First, it was performed to the effects of swirl brake on the static flow characteristics of labyrinth seal with swirl ratio and pressure distribution based on computational fluid dynamics (CFD). And then a comparison between leakage predicted by the CFD model and measurement was presented to verify the accuracy of the simulation. Moreover, an experiment was implemented to analyze the rotordynamic characteristics of labyrinth seal using an improved impedance method based on an unbalanced synchronous excitation method on a rotor test rig. The influences of swirl brake density, length, inlet/outlet pressure ratio, and rotating speed were measured and discussed, respectively. The CFD numerical results show that the swirl brake effectively reduces the seal swirl ratio (∼60–75% less), circumferential pressure difference (∼25–85% less) so that the seal destabilizing forces decrease. With the increasing of the swirl vanes density and length, the seal leakage drops (∼8–20% less). The experimental rotordynamic characteristics results show that it is more obvious to reduce the cross-couple stiffness (∼50–300% less) and increase the direct damping (∼50–60% larger) with the increasing in the number and length of the swirl vanes, and thus the swirl brake improves the seal rotordynamic stability. The efforts of this paper provide a useful insight to clearly understand the effects of swirl brakes on the labyrinth seal static and rotordynamic characteristics, which is beneficial to improve the design of annular seals.


Author(s):  
Kali Charan Nayak ◽  
Nomesh P. Kandaswamy ◽  
Syed Faheemulla

Abstract Stepped labyrinth seals are used in multiple locations in the gas turbine with the intent to reduced leakage compared to straight labyrinth seals. However the selection of geometric factors in stepped labyrinth seals is critical to allow lower leakage in its operating envelope. Particularly the step height and axial position during the running condition play a vital role. The influence of these factors on the leakage, swirl development and windage heating in stepped labyrinth seal has not been thoroughly investigated in the previously published work. This paper focuses to study above effects with numerical simulations in a smooth four-fin stepped labyrinth seal. Specifically, a 2D axi-symmetric computational fluid dynamics (CFD) model is developed utilizing commercial finite volume-based software incorporating the standard k-ε turbulence model. Using this model, a broad parametric study is conducted by varying step height, axial position of the knife from the step, radial clearance and pressure ratio for a four-teeth stepped labyrinth seal. It has been observed that the seal leakage reduces with increase in step height to pitch ratio up to 0.35 and with further increase it tails off. The axial position of the tooth has strong influence on the flow structure and swirl development in the seal pocket.


Author(s):  
Elias A. Soto A. ◽  
Dara W. Childs

Centrifugal compressors are increasingly required to operate at higher pressures, speeds, and fluid density. In these conditions, compressors are susceptible to rotordynamic instabilities. To remedy this situation, labyrinth seals have sometimes been modified by using shunt injection. In shunt injection, the gas is taken from the diffuser or discharge volute and injected into an upstream chamber of the balance-piston labyrinth seal. The injection direction can be radial or against rotation. This study contains the first measured rotordynamic data for labyrinth seals with shunt injection. A comparison has been made between conventional labyrinth seals, labyrinth seal with shunt injection (radial and against rotation), and a honeycomb seal. Labyrinth seals with injection against rotation are better able to control rotordynamic instabilities than labyrinth seals with radial injection; however, the leakage is slightly higher. The leakage comparison for all seals demonstrates that the honeycomb seal has the best flow control. Test data are presented for a top rotor surface velocity of 110 m/sec, a supply pressure of 13.7 bars, and IPr = 0.95 (injection pressure is 1.05 = 1/0.95 times the seal inlet pressure). For these conditions, and considering effective damping, the labyrinth seal with injection against rotation is better than the honeycomb seal when the pressure ratio across the seal PR<0.45. On the other hand, the honeycomb seal is better when PR>0.45. The effectiveness of the shunt-injection against rotation in developing effective damping is reduced with increasing rotor surface velocity.


2020 ◽  
Vol 10 (17) ◽  
pp. 5771
Author(s):  
Yuming Zhu ◽  
Yuyan Jiang ◽  
Shiqiang Liang ◽  
Chaohong Guo ◽  
Yongxian Guo ◽  
...  

An actual one-dimensional(1-D) computation method for a labyrinth seal is proposed. Relevant computation hypotheses for the 1-D method are analyzed and the specificity of internal flow in an SCO2 (supercritical CO2) labyrinth seal is explored in advance. Then, the experimental correlation discharge coefficient and the residual kinetic energy coefficient used in SCO2 labyrinth seals are proposed. In addition, the speed of sound in two-phase flow is corrected in the 1-D method. All recent experimental results of the SCO2 labyrinth seal are sorted out and the latest experimental results of a stepped-staggered labyrinth seal are proposed to verify the accuracy and applicability of the 1-D method. Finally, the sealing efficiency of the SCO2 labyrinth seals are analyzed using the 1-D method.


Author(s):  
Jun Li ◽  
Xin Yan ◽  
Guojun Li ◽  
Zhenping Feng

Honeycomb stepped labyrinth seals in turbomachinery enhance aerodynamic efficiency by reducing leakage flow losses through the clearance between rotating and stationary components. The influence of pressure ratio and sealing clearance on the leakage flow characteristics in the honeycomb stepped labyrinth seal is numerically determined. The geometries investigated represent designs of the honeycomb labyrinth seal typical for modern turbomachinery. The leakage flow fields in the honeycomb and smooth stepped labyrinth seals are obtained by the Reynolds-Averaged Navier-Stokes solution using the commercial software FLUENT. Numerical simulations covered a range of pressure ratio and three sizes of sealing clearance for the honeycomb and smooth stepped labyrinth seals. The numerical discharge coefficients of the non-rotating honeycomb and smooth stepped labyrinth seals are in good agreement with previous experimental data. In addition rotational effects are also taken into account in numerical computations. The numerical results show that the leakage flow rate increases with the increasing pressure ratio at the fixed sealing clearance for the rotating and non-rotating honeycomb labyrinth seal. The influence of the sealing clearance on the leakage flow pattern for the rotating and non-rotating honeycomb labyrinth seal are observed. Moreover, the similar leakage flow rates are obtained at the same flow condition between the rotating and non-rotating honeycomb labyrinth seal due to the honeycomb acts to kill swirl velocity development for the rotating honeycomb labyrinth seal.


Author(s):  
Daniel Frączek ◽  
Krzysztof Bochon ◽  
Włodzimierz Wróblewski

The aim of this study was to identify the best structures of the honeycomb (or structures used instead of it) that can be applied to a seal cavity labyrinth in order to improve the sealing performance. The problem was investigated numerically using the ANSYS CFX commercial software. The paper presents geometrical data concerning the proposed solutions to the labyrinth seal land structure. A simple straight-through labyrinth geometry with two leaned fins is analysed. Such a simple structure of the flow conditions was chosen to reduce the influence of other effects on the seal performance. Three-dimensional models of the labyrinth seal were elaborated for each honeycomb or honeycomb-like land structure. The following concepts were analysed: an inclination of the honeycomb cells, a land with different cell shapes (squeezed honeycomb) and honeycomb cells filled with a porous material. The labyrinth seals with different land structures were compared with two reference cases: a seal with a standard honeycomb land (with 1/8-inch cell size) and a seal with a smooth land. Calculations were performed for the pressure ratio values ranging from 1.08 to 1.8 and for varied sizes of the clearance. Main parameters of the leakage flows are discussed. Additionally, the influence of the inlet narrowing on the seal performance is investigated. A qualitative assessment of the seal concepts is made and the most promising solutions are pointed out.


Author(s):  
M. Selvaraji ◽  
Sam P. Joseph ◽  
N. Nirmal

There is a growing demand for compressed air in the industry for various applications. Majority of industrial requirements is in line with screw compressor operating range. Design and construction of screw compressors are demanding tasks that require advanced calculations and theoretical knowledge. Clearances play a major role in the performance and reliability aspects of a screw compressor. Seals are provided in compressors to fit around rotor shafts in order to prevent the leakage of lubricating oil and working medium. However there is a small clearance between the seal and rotor shaft, which can cause potential leakage of the working medium. The performance of the compressor is directly related to the leakage rate through the seals. The labyrinth seal is a special type of seal, used in screw compressors and turbo-machinery for sealing purpose. Labyrinth seal is a non-contacting type seal that uses a tortuous path to minimize the gas leakage. The pressure drop occurs at each labyrinth tooth as the medium is squeezed between the labyrinth tooth and the rotor. The leakage through the seal is directly related to the labyrinth profile and also the clearance between the rotor and the labyrinth tooth. The present work is carried out to reduce the leakage through the labyrinth seal by optimising the tooth profile and operating clearances. Heat transfer analysis is carried out on the housing of the labyrinth seal to find out the boundary temperature of the seal. Also the heat transfer analysis on the labyrinth seal followed by Thermo-structural analysis is carried out to find out the accurate operating clearance of the seal. By using CFD as a tool, the optimisation is carried out on different design configurations of labyrinth seal by comparing the deviation in leakage rates. Effect of rotor speed, width of seal and pressure ratio on air leakage rate is also investigated. A set of labyrinth seals has been designed based on the above optimisation and tested in the compressor. The results have been compared with the CFD prediction.


Sign in / Sign up

Export Citation Format

Share Document