Blowout Sensitivities in a Liquid Fueled Combustor: Fuel Composition and Preheat Temperature Effects

Author(s):  
Nicholas Rock ◽  
Ianko Chterev ◽  
Benjamin Emerson ◽  
Jerry Seitzman ◽  
Tim Lieuwen

The objective of this paper is to identify the influence of fuel composition on blowoff limits in a liquid fueled combustor. In premixed, gaseous systems, blowoff is a kinetically limited phenomenon, possibly with additional heat loss effects. In liquid fueled systems, the situation is far more complex, as a variety of processes can influence blowoff, including kinetics, atomization, vaporization, mixing, and heat transfer. Which one of these processes is controlling is a function of fuel and air preparation and premixing, approach flow temperature and pressure, and fuel physical and kinetic properties. This paper extends our prior work on this problem by presenting blowoff results from ten liquid fuels at two air inlet temperatures, 450 K and 300 K. At 450 K, blowoff appears to be limited by kinetics and/or radiation losses, while it seems vaporization limited at 300 K. Specifically, strong negative correlations were observed between blowoff limits and the cetane number of the fuel at the 450 K conditions. Similarly good correlations are observed with the fuel smoke point, and its percentage of aromatics. This supports two different hypotheses: (1) it is the fuels with the shortest ignition delay, and therefore the fastest reaction rates, that are the most resistant to blowoff, or (2) it is the fuels with the greatest radiation losses (presumably vaporizing/preheating the approach flow fuel droplets) that are the most blowoff resistant. Additional measurements with other fuels that decouple ignition and radiative characteristics are needed to differentiate these effects. At air inlet temperatures of 300 K, the governing physics seem quite clear from the data. Strong positive correlations were observed with LBO and boiling point temperature across the entire distillation range. As long as the air inlet temperature is above the fuel flash point, the easiest to vaporize fuels are the hardest to blowoff. It is suspected that difficult to vaporize fuels blowoff easily due to locally non-flammable regions in this low temperature regime.

Author(s):  
Brandon Sforzo ◽  
Hoang Dao ◽  
Sheng Wei ◽  
Jerry Seitzman

The effects of jet fuel composition on ignition probability have been studied in a flowfield that is relevant to turbine engine combustors, but also fundamental and conducive to modeling. In the experiments, a spark kernel is ejected from a wall and propagates transversely into a crossflow. The kernel first encounters an air-only stream before transiting into a second, flammable (premixed) stream. The two streams have matched velocities, as verified by hot-wire measurements. The liquid fuels span a range of physical and chemical kinetic properties. To focus on their chemical differences, the fuels are prevaporized in a carrier air flow before being injected into the experimental facility. Ignition probabilities at atmospheric pressure and elevated crossflow temperature were determined from optical measurements of a large number of spark events, and high speed imaging was used to characterize the kernel evolution. Eight fuel blends were tested experimentally; all exhibited increasing ignition probability as equivalence ratio increased, at least up to 1.5. Statistically significant differences between fuels were measured that have some correlation with fuel properties. To elucidate these trends, the forced ignition process was also studied with a reduced order numerical model of an entraining kernel. The simulations suggest ignition is successful if sufficient heat release occurs before entrainment of colder crossflow fluid quenches the exothermic oxidation reactions. As the kernel is initialized in air, it remains lean during the initial entrainment of the fuel-air mixture; thus richer crossflows lead to quicker and higher exothermicity.


Author(s):  
Brandon Sforzo ◽  
Hoang Dao ◽  
Sheng Wei ◽  
Jerry Seitzman

The effects of jet fuel composition on ignition probability have been studied in a flowfield that is relevant to turbine engine combustors, but also fundamental and conducive to modeling. In the experiments, a spark kernel is ejected from a wall and propagates transversely into a crossflow. The kernel first encounters an air-only stream before transiting into a second, flammable (premixed) stream. The two streams have matched velocities, as verified by hot-wire measurements. The liquid fuels span a range of physical and chemical kinetic properties. To focus on their chemical differences, the fuels are prevaporized in a carrier air flow before being injected into the experimental facility. Ignition probabilities at atmospheric pressure and elevated crossflow temperature were determined from optical measurements of a large number of spark events, and high-speed imaging was used to characterize the kernel evolution. Eight fuel blends were tested experimentally; all exhibited increasing ignition probability as equivalence ratio increased, at least up to the maximum value studied (∼0.8). Statistically significant differences between fuels were measured that have some correlation with fuel properties. To elucidate these trends, the forced ignition process was also studied with a reduced-order numerical model of an entraining kernel. The simulations suggest ignition is successful if sufficient heat release occurs before entrainment of colder crossflow fluid quenches the exothermic oxidation reactions. As the kernel is initialized in air, it remains extremely lean during the initial entrainment of the fuel–air mixture; thus, richer crossflows lead to quicker and higher exothermicity.


Author(s):  
Martin Andersson ◽  
Hedvig Paradis ◽  
Jinliang Yuan ◽  
Bengt Sunde´n

It is expected that fuel cells will play a significant role in a future sustainable energy system. They are energy efficient, fuel can be produced nearly locally and, when a renewable fuel such as ethanol, methanol and biogas is used, there are no net emissions of greenhouse gases. Fuel cells have during recent years various progresses, but the technology is still in the early phases of development, however the potential is enormous. In this study a CFD approach (COMSOL Multiphysics) is employed to investigate effects of different fuels such as biogas, pre-reformed methanol, ethanol and natural gas. The fuel composition and inlet temperature are varied to study the effect on temperature distribution, molar fraction distribution and reforming reaction rates within a singe cell for an intermediate temperature solid oxide fuel cell (IT-SOFC). The developed model is based on the governing equations of heat-, mass- and momentum transport, which are solved together with global reforming kinetics. The result shows that the heat generation within the cell depends mainly on the initial fuel composition and the inlet temperature. The water-gas shift reaction proceeds to the right as hydrogen is consumed and water generated in the electrochemical reactions at the anodic three-phase boundaries.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Luiz C. Corrêa-Filho ◽  
Maria M. Lourenço ◽  
Margarida Moldão-Martins ◽  
Vítor D. Alves

Carotenoids are a class of natural pigments found mainly in fruits and vegetables. Among them,β-carotene is regarded the most potent precursor of vitamin A. However, it is susceptible to oxidation upon exposure to oxygen, light, and heat, which can result in loss of colour, antioxidant activity, and vitamin activity. Thus, the objective of this work was to study the microencapsulation process ofβ-carotene by spray drying, using arabic gum as wall material, to protect it against adverse environmental conditions. This was carried out using the response surface methodology coupled to a central composite rotatable design, evaluating simultaneously the effect of drying air inlet temperature (110-200°C) and the wall material concentration (5-35%) on the drying yield, encapsulation efficiency, loading capacity, and antioxidant activity. In addition, morphology and particles size distribution were evaluated. Scanning electron microscopy images have shown that the particles were microcapsules with a smooth surface when produced at the higher drying temperatures tested, most of them having a diameter lower than 10μm. The conditions that enabled obtaining simultaneously arabic gum microparticles with higherβ-carotene content, higher encapsulation efficiency, and higher drying yield were a wall material concentration of 11.9% and a drying inlet temperature of 173°C. The systematic approach used for the study ofβ-carotene microencapsulation process by spray drying using arabic gum may be easily applied for other core and wall materials.


Author(s):  
Bo Wang ◽  
Chi Zhang ◽  
Yuzhen Lin ◽  
Xin Hui ◽  
Jibao Li

In order to balance the low emission and wide stabilization for lean premixed prevaporized (LPP) combustion, the centrally staged layout is preferred in advanced aero-engine combustors. However, compared with the conventional combustor, it is more difficult for the centrally staged combustor to light up as the main stage air layer will prevent the pilot fuel droplets arriving at igniter tip. The goal of the present paper is to study the effect of the main stage air on the ignition of the centrally staged combustor. Two cases of the main swirler vane angle of the TeLESS-II combustor, 20 deg and 30 deg are researched. The ignition results at room inlet temperature and pressure show that the ignition performance of the 30 deg vane angle case is better than that of the 20 deg vane angle case. High-speed camera, planar laser induced fluorescence (PLIF), and computational fluids dynamics (CFD) are used to better understand the ignition results. The high-speed camera has recorded the ignition process, indicated that an initial kernel forms just adjacent the liner wall after the igniter is turned on, the kernel propagates along the radial direction to the combustor center and begins to grow into a big flame, and then it spreads to the exit of the pilot stage, and eventually stabilizes the flame. CFD of the cold flow field coupled with spray field is conducted. A verification of the CFD method has been applied with PLIF measurement, and the simulation results can qualitatively represent the experimental data in terms of fuel distribution. The CFD results show that the radial dimensions of the primary recirculation zone of the two cases are very similar, and the dominant cause of the different ignition results is the vapor distribution of the fuel. The concentration of kerosene vapor of the 30 deg vane angle case is much larger than that of the 20 deg vane angle case close to the igniter tip and along the propagation route of the kernel, therefore, the 30 deg vane angle case has a better ignition performance. For the consideration of the ignition performance, a larger main swirler vane angle of 30 deg is suggested for the better fuel distribution when designing a centrally staged combustor.


2013 ◽  
Vol 420 ◽  
pp. 30-35
Author(s):  
Khanittha Wongseedakaew ◽  
Jesda Panichakorn

This paper presents the effects of rough surface air-soft elastohydrodynamic lubrication (EHL) of rollers for soft material under the effect of air molecular slip. The time independent modified Reynolds equation and elasticity equation were solved numerically using finite different method, Newton-Raphson method and multigrid multilevel methods were used to obtain the film pressure profiles and film thickness in the contact region. The effects of amplitude of surface roughness, modulus of elasticity and air inlet temperature are examined. The simulation results showed surface roughness has effect on film thickness but it little effect to air film pressure. When the amplitude of surface roughness and modulus of elasticity increased, the air film thickness decreased but air film pressure increased. However, the air inlet temperature increased when the air film thickness increased.


Author(s):  
Tak W. Chan ◽  
Pervez Canteenwalla ◽  
Wajid A. Chishty

The effects of altitude and fuel composition on gaseous and particle emissions from a turbojet engine were investigated as part of the National Jet Fuels Combustion Program (NJFCP) effort. Two conventional petroleum based jet fuels (a “nominal” and a “worst-case” jet fuel) and two test fuels with unique characteristics were selected for this study. The “worst-case” conventional jet fuel with high flash point and viscosity resulted in reduced combustion efficiency supported by the reduced CO2 emissions and corresponding increased CO and THC emissions. In addition, increased particle number (PN), particle mass (PM), and black carbon (BC) emissions were observed. Operating the engine on a bimodal fuel, composed of heavily branched C12 and C16 iso-paraffinic hydrocarbons with an extremely low cetane number did not significantly impact the engine performance or gaseous emissions but significantly reduced PN, PM, and BC emissions when compared to other fuels. The higher aromatic content and lower hydrogen content in the C-5 fuel were observed to increase PN, PM, and BC emissions. It is also evident that the type of aromatic hydrocarbons has a large impact on BC emissions. Reduction in combustion efficiency resulted in reduced CO2 emissions and increased CO and THC emissions from this engine with increasing altitudes. PN emissions were moderately influenced by altitude but PM and BC emissions were significantly reduced with increasing altitude. The reduced BC emissions with increasing altitude could be a result of reduced combustion temperature which lowered the rate of pyrolysis for BC formation, which is supported by the NOx reduction trend.


Author(s):  
Sheng Wei ◽  
Brandon Sforzo ◽  
Jerry Seitzman

In gas turbine combustors, ignition is achieved by using sparks from igniters to start a flame. The process of sparks interacting with fuel/air mixture and creating self-sustained flames is termed forced ignition. Physical and chemical properties of a liquid fuel can influence forced ignition. The physical effects manifest through processes such as droplet atomization, spray distribution, and vaporization rate. The chemical effects impact reaction rates and heat release. This study focuses on the effect of fuel composition on forced ignition of fuel sprays in a well-controlled flow with a commercial style igniter. A facility previously used to examine prevaporized, premixed liquid fuel-air mixtures is modified and employed to study forced ignition of liquid fuel sprays. In our experiments, a wall-mounted, high energy, recessed cavity discharge igniter operating at 15 Hz with average spark energy of 1.25 J is used to ignite liquid fuel spray produced by a pressure atomizer located in a uniform air coflow. The successful outcome of each ignition events is characterized by the (continued) presence of chemiluminescence 2 ms after spark discharge, as detected by a high-speed camera. The ignition probability is defined as the fraction of successful sparks at a fixed condition, with the number of events evaluated for each fuel typically in the range 600–1200. Ten fuels were tested, including standard distillate jet fuels (e.g., JP-8 and Jet-A), as well as many distillate and alternative fuel blends, technical grade n-dodecane, and surrogates composed of a small number of components. During the experiments, the air temperature is controlled at 27 C and the fuel temperature is controlled at 21 C. Experiments are conducted at a global equivalence ratio of 0.55. Results show that ignition probabilities correlate strongly to liquid fuel viscosity (presumably through droplet atomization) and vapor pressure (or recovery temperature), as smaller droplets of a more volatile fuel would lead to increased vaporization rates. This allows the kernel to transition to a self-sustained flame before entrainment reduces its temperature to a point where chemical rates are too slow. Chemical properties of the fuel showed little influence, except when the fuels had similar physical properties. This result demonstrates that physical properties of liquid fuels have dominating effects on forced ignition of liquid fuel spray in coflow air.


Author(s):  
Arnab Roy ◽  
Donald Ferguson ◽  
Todd Sidwell ◽  
Peter Strakey

Operational characteristics of an air breathing Rotating Detonation Combustor (RDC) fueled by natural gas-hydrogen blends are discussed in this paper. Experiments were performed on a 152 mm diameter uncooled RDC with a combustor to inlet area ratio of 0.2 at elevated inlet temperature and combustor pressure while varying the fuel split between natural gas and hydrogen over a range of equivalence ratios. Experimental data from short-duration (∼6sec) tests are presented with an emphasis on identifying detonability limits and exploring detonation stability with the addition of natural gas. Although the nominal combustor used in this experiment was not specifically designed for natural gas-air mixtures, significant advances in understanding conditions necessary for sustaining a stable, continuous detonation wave in a natural gas-hydrogen blended fuel were achieved. Data from the experimental study suggests that at elevated combustor pressures (2–3bar), only a small amount of natural gas added to the hydrogen is needed to alter the detonation wave operational mode. Additional observations indicate that an increase in air inlet temperature (up to 204°C) at atmospheric conditions significantly affects RDC performance by increasing deflagration losses through an increase in the number of combustion (detonation/Deflagration) regions present in the combustor. At higher backpressure levels the RDC exhibited the ability to achieve stable detonation with increasing concentrations of natural gas (with natural gas / hydrogen-air blend). However, losses tend to increase at intermediate air preheat levels (∼120°C). It was observed that combustor pressure had a first order influence on RDC stability in the presence of natural gas. Combining the results from this limited experimental study with our theoretical understanding of detonation wave fundamentals provides a pathway for developing an advanced combustor capable of replacing conventional constant pressure combustors typical of most power generation processes with one that produces a pressure gain.


Sign in / Sign up

Export Citation Format

Share Document