Thermal Profiling of Automotive Turbochargers in Durability Tests

Author(s):  
Christopher C. Pilgrim ◽  
Jan Ehrhard ◽  
Mario Schinnerl ◽  
Silvia Araguás-Rodríguez ◽  
David Peral ◽  
...  

Abstract A major portion of the development of an automotive powertrain system is devoted to robustness and durability testing to ascertain the viability of the design. For turbochargers, thermo-mechanical fatigue is often considered as life limiting failure mechanism for the turbine section, therefore, these tests involve repeated and continuous cycling of the turbocharger for hundreds of hours. Thermocouples are used to monitor the temperature during the test, however, they only provide information at the location to which they are attached, are practically challenging to apply to all areas of interest and are prone to fail due to the thermal cycling throughout the test. As a result, there may be very limited temperature data at the end of the test. If a failure occurred in the system during the testing, the lack of temperature data can inhibit the understanding of the cause. Further testing may be required and delay product release, which add significant expense to the product development. The Thermal History Coatings (THC) developed by Sensor Coating Systems can offer a new and unique solution to provide complimentary temperature information for this purpose. THCs are applied to the surface of a component and, when heated, the coating permanently changes according to the maximum temperature of exposure. A laser-based instrumentation system is then used to measure the coating or paint, and through calibration, the maximum temperature profile of the surface can be recorded. Although this technique is relatively new, it has been used in several turbomachinery, and other applications to capture the spatial temperature distribution of critical components. However, the turbocharger durability test presents new challenges for the technique. It has not been tested in this type of application and the extended and repeated cycling operation can test the durability of the coating and will influence the response of the coating, hence, the temperature measurements. The internal surfaces of the turbocharger will also be exposed to the exhaust gases of the combustion process. In this paper, the capability of the THC for this application was investigated. For the first time, the effect of cyclic operation on the THC is reported. The measurement capability was demonstrated on two turbine housings tested on a gas stand, one for a single cycle, another for 10 cycles. The results show that the surface temperature profile of the two turbine housings can be accurately recorded and the results are validated against the installed thermocouples. The demonstration indicates that the THC can be used to acquire accurate and detailed spatial temperature distributions, which significantly enhance the information from thermocouples alone. This information can be used to improve the interpretation of the durability test and hence accelerate new product release.

Author(s):  
Christopher Pilgrim ◽  
Jan Ehrhard ◽  
Mario Schinnerl ◽  
Silvia Araguás Rodríguez ◽  
David Peral ◽  
...  

Abstract A major portion of the development of an automotive powertrain system is devoted to robustness and durability testing to ascertain the viability of the design. For turbochargers, thermo-mechanical fatigue is often considered as life limiting failure mechanism for the turbine section, therefore, these tests involve repeated and continuous cycling of the turbocharger for hundreds of hours. The Thermal History Coatings (THC) can offer a new and unique solution. THCs are applied to the surface of a component and, when heated, the coating permanently changes according to the maximum temperature of exposure. The technique has been used in several turbomachinery, and other applications to capture the spatial temperature distribution of critical components. However, the turbocharger durability test presents new challenges for the technique. It has not been tested in this type of application and repeated cycling operation can test the response of the coating on the temperature measurements. In this paper, the capability of the THC for this application was investigated. For the first time, the effect of cyclic operation on the THC is reported. The measurement capability was demonstrated on two turbine housings tested on a gas stand, one for a single cycle, another for 10 cycles. The results show that the surface temperature profile of the two turbine housings can be accurately recorded and the results are validated against the installed thermocouples. The demonstration indicates that the THC can be used to acquire accurate and detailed spatial temperature distributions. This information improves the interpretation of a durability test.


2015 ◽  
Vol 22 (2) ◽  
pp. 193-204 ◽  
Author(s):  
Sławomir Cięszczyk

Abstract Spectral remote sensing is a very popular method in atmospheric monitoring. The paper presents an approach that involves mid-infrared spectral measurements of combustion processes. The dominant feature in this spectral range is CO2 radiation, which is used to determine the maximum temperature of nonluminous flames. Efforts are also made to determine the temperature profile of hot CO2, but they are limited to the laboratory conditions. The paper presents an analysis of the radiation spectrum of a non-uniform-temperature gas environment using a radiative transfer equation. Particularly important are the presented experimental measurements of various stages of the combustion process. They allow for a qualitative description of the physical phenomena involved in the process and therefore permit diagnostics. The next step is determination of a non-uniform-temperature profile based on the spectral radiation intensity with the 8 m optical path length.


2015 ◽  
Vol 1092-1093 ◽  
pp. 498-503
Author(s):  
La Xiang ◽  
Yu Ding

Natural gas (NG) is one of the most promising alternative fuels of diesel and petrol because of its economics and environmental protection. Generally the NG engine share the similar structure profile with diesel or petrol engine but the combustion characteristics of NG is varied from the fuels, so the investigation of NG engine combustion process receive more attentions from the researchers. In this paper, a zero-dimensional model on the basis of Vibe function is built in the MATLAB/SIMULINK environment. The model provides the prediction of combustion process in natural gas engines, which has been verified by the experimental data in the NG test bed. Furthermore, the influence of NG composition on engine performance is investigated, in which the in-cylinder maximum pressure and temperature and mean indicated pressure are compared using different type NG. It is shown in the results that NG with higher composition of methane results in lower maximum temperature and mean indicated pressure as well as higher maximum pressure.


2020 ◽  
Vol 4 (2) ◽  
pp. 108
Author(s):  
Dimas Prakoswo Widayani ◽  
Kresna Shifa Usodri

Mount Arjuna is a mountainous area with forests and several cultivated plants located in Malang Regency, East Java. The forest is a complex area that is used as a protected area, research and production forest for agricultural commodities. The complex is located in the forest resulted in highly varied environmental conditions. The forest consists of several areas, namely protected forest, production forest, coffee plantation, and seasonal plantations. The Arjuna mountain area has several stands including pine and mahogany, but most of it is filled with pines by 90% and mahogany trees around 10%. Most of the coffee plants found in the Arjuna mountain forest area are Arabica coffee, while the rest is robusta coffee. This research was conducted on the slopes of Mount Arjuna, located in Sumbersari Village, Karangploso District, Malang Regency, East Java. This research was conducted from July to October 2017. This research employed a survey method by taking several sample points that represent the coffee plants in the area. Several sampling plots for land suitability analysis were identified in the area: The observation stages were carried out by taking air temperature data using a thermohygrometer by taking the minimum and maximum temperature data, taking air humidity using a thermohigrometer as well as minimum and maximum data and light intensity data using lux meters, taking soil samples to measure nutrients and soil fertility, and measuring the height and slope of the land. The results of the observations that have been made will be analyzed using the land suitability analysis method, by adjusting the area's data with the land suitability level for robusta and arabica coffee plants.Gunung Arjuna merupakan kawasan pegunungan dengan hutan serta beberapa tanaman budidaya yang terletak di Kabupaten Malang, Jawa Timur. Hutan tersebut merupakan kawasan kompleks yang dimanfaatkan sebagai kawasan lindung, riset dan juga hutan produksi untuk komoditas pertanian. Kondisi hutan yang kompleks mengakibatkan kondisi lingkungan tersebut sangat bervariatif. Hutan terdiri dari beberapa kawasanya, yaitu hutan lindung, hutan produksi, perkebunan kopi serta kawasan tanaman semusim. Kawasan gunung Arjuna memiliki beberapa tegakan diantaranya pinus dan mahoni namun sebagian besar dipenuhi oleh pinus sebesar 90% dan pohon mahoni berkisar 10%. Sebagian besar tanaman kopi yang terdapat pada kawasan hutan gunung Arjuna adalah jenis kopi arabika sedangkan sisanya adalah kopi robusta. Penelitian ini dilakukan di kawasan lereng Gunung Arjuna, Terletak di Desa Sumbersari, Kecamatan Karangploso, Kabupaten Malang, Jawa Timur. Penelitian ini akan dilaksanakan pada bulan Juli–Oktober 2017. Penelitian ini menggunakan metode survei dengan mengambil beberapa titik sampel yang mewakili yang mewakili tanaman kopi di kawasan tesebut. Beberapa plot sampel pengambilan sampel untuk analisis kesesuaian lahan diidentifikasi pada kawasan: Adapun tahapan pengamatan yang dilakukanya itu pengambilan data suhu udara menggunakan termohigrometer dengan mengambil data suhu minimum dan maksimum, pengambilan kelembapan udara dengan alat termohigrometer juga data minimum dan maksimum serta data intensitas cahaya menggunakan lux meter, pengambilan sampel tanah untuk mengukur hara serta kesuburan tanah, mengukur ketinggian serta tingkat kelerengan lahan. Hasil pengamatan yang telah dilakukan akan dianalisis menggunakan metode analisis kesesuaian lahan, dengan menyesuaikan data kawasan tersebut dengan tingkat kesesuaian lahan untuk tanaman kopi robusta dan arabika.


2021 ◽  
Vol 2 (2) ◽  
pp. 60-67
Author(s):  
Rashidul Hasan Rashidul Hasan

The estimation of a suitable probability model depends mainly on the features of available temperature data at a particular place. As a result, existing probability distributions must be evaluated to establish an appropriate probability model that can deliver precise temperature estimation. The study intended to estimate the best-fitted probability model for the monthly maximum temperature at the Sylhet station in Bangladesh from January 2002 to December 2012 using several statistical analyses. Ten continuous probability distributions such as Exponential, Gamma, Log-Gamma, Beta, Normal, Log-Normal, Erlang, Power Function, Rayleigh, and Weibull distributions were fitted for these tasks using the maximum likelihood technique. To determine the model’s fit to the temperature data, several goodness-of-fit tests were applied, including the Kolmogorov-Smirnov test, Anderson-Darling test, and Chi-square test. The Beta distribution is found to be the best-fitted probability distribution based on the largest overall score derived from three specified goodness-of-fit tests for the monthly maximum temperature data at the Sylhet station.


2021 ◽  
Author(s):  
Wenchang Zhang ◽  
Yingjie Xu ◽  
Xinyu Hui ◽  
Weihong Zhang

Abstract This paper develops a multi-objective optimization method for the cure of thick composite laminates. The purpose is to minimize the cure time and maximum temperature overshoot in the cure process by designing the cure temperature profile. This method combines the finite element based thermo-chemical coupled cure simulation with the non-dominated sorting genetic algorithm-II (NSGA-II). In order to investigate the influence of the number of dwells on the optimization result, four-dwell and two-dwell temperature profiles are selected for the design variables. The optimization method obtains successfully the Pareto optimal front of the multi-objective problem in thick and ultra-thick laminates. The result shows that the cure time and maximum temperature overshoot are both reduced significantly. The optimization result further illustrates that the four-dwell cure profile is more e ective than the two-dwell, especially for the ultra-thick laminates. Through the optimization of the four-dwell profile, the cure time is reduced by 51.0% (thick case) and 30.3% (ultra-thick case) and the maximum temperature overshoot is reduced by 66.9% (thick case) and 73.1% (ultra-thick case) compared with the recommended cure profile. In addition, Self-organizing map (SOM) is employed to visualize the relationships between the design variables with respect to the optimization result.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 743-751 ◽  
Author(s):  
Fang Wang ◽  
Jakov Baleta ◽  
Qiang Wang ◽  
Baokuan Li

Abstract In the present work, a transient full-coupled modelling approach has been put forward to study the effect of electrode tip on formation of metal droplets and temperature profile in the electromagnetically-controlled electroslag-remelting furnace with vibrating electrode. The electromagnetic field, momentum and energy conservation equations are solved simultaneously based on the finite volume method. The interface of slag and metal is traced using the volume of fluid approach. The results show that in the case of cone tip electrode the average dimension of metal droplets is smaller compared to the flat tip electrode. In addition, the bigger and stretched metal droplets are not observed with the cone tip electrode. The temperature fields with the cone tip electrode are distributed in a prominent periodic pattern compared to the case with flat tip electrode. The maximum temperature zone with the cone tip electrode is located along the z axial in the upper part of slag, not in the lower part. When the frequency changes from 0.17 Hz to 1 Hz, the maximum temperature reduces from 2050 K to 1985 K and the peak value of velocity decreases from 0.20 m/s to 0.125 m/s. When the vibration amplitude varies from 3mm to 6mm, the maximum temperature in the slag cover drops by 3.9% and the peak value of velocity rises by 16.7%.


Author(s):  
Robert Krewinkel ◽  
Jens Färber ◽  
Martin Lauer ◽  
Dirk Frank ◽  
Ulrich Orth ◽  
...  

The ever-increasing requirements on gas turbine efficiency, which are at least partially met by increasing firing temperatures, and the simultaneous demand for reduced emissions, necessitate much more accurate calculations of the combustion process and combustor wall temperatures. Thermocouples give locally very accurate measurements of these temperatures, but there is a practical limit to the amount of measurement points. Thermal paints are another established measurement technique, but are toxic and at the same time require dedicated, short-duration tests. Thermal History Paints (THPs) provide an innovative alternative to the aforementioned techniques, but so far only a limited number of tests has been conducted under real engine conditions. THPs are similar in their chemical and physical make-up to conventional thermographic phosphors which have been successfully used in gas turbine applications for on-line temperature detection before. A typical THP comprises of oxide ceramic pigments and a water based binder. The ceramic is synthesized to be amorphous and when heated it crystallizes, permanently changing the microstructure. The ceramic is doped with lanthanide ions to make it phosphorescent. The lanthanide ions act as atomic level sensors and as the structure of the material changes, so do the phosphorescent properties of the material. By measuring the phosphorescence the maximum temperature of exposure can be determined through calibration, enabling post operation measurements at ambient conditions. This paper describes a test in which THP was applied to an impingement-cooled front panel from a combustor of an industrial gas turbine. Since this component sees a wide range of temperatures, it is ideally suited for the testing of the measurement techniques under real engine conditions. The panel was instrumented with a thermocouple and thermal paint was applied to the cold side of the impingement plate. THP was applied to the hot-gas side of this plate for validation against the other measurement techniques and to evaluate its resilience against the reacting hot gas environment. The durability and temperature results of the three different measurement techniques are discussed. The results demonstrate the benefits of THPs as a new temperature profiling technique. It is shown that the THP exhibited greater durability compared to the conventional thermal paint. Furthermore, the new technology provided detailed measurements down to millimeters indicating local temperature variations and global variations over the complete component.


1962 ◽  
Vol 2 (01) ◽  
pp. 21-27 ◽  
Author(s):  
P.E. Baker

Introduction In this paper, approximate analytical expressions are derived for the temperature profile developed in the underground combustion method of oil recovery. A qualitative description of the process may be found in a paper by Tadema. The flame front is regarded as a moving source with a constant rate of heat generation. Heat transfer is by conduction and convection. Previous publications, of which a few are cited here, have also attacked this problem and have presented solutions pertaining to different methods of approximating or idealizing the process studied. The present paper also treats an idealized case: linear flow is assumed for heat and fluids, and vaporization and condensation effects are neglected. The results obtained are similar to those derived by Bailey and Larkin, but are obtained by an entirely different procedure. The method used here should give considerably greater insight into the physics of the in situ combustion process. Four types of cases are considered, distinguished by thermal and fluid-flow properties of the system. A constant rate of heat generation and constant rate of flame-front advance are assumed. Flamefront temperature is determined for each case using a heat balance which involves the entire temperature profile. The applicability of the different solutions to real systems is discussed after they are all presented. Again, this is done for the purpose of understanding better the physics of the process. Consideration of the nonapplicable solutions and of the reasons for their not applying is significant. In a paper by Cooperman, the only case solved is one considered here as not applicable.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1713-1717
Author(s):  
Guan Qing Wang ◽  
Dan Luo ◽  
Ning Ding ◽  
Jiang Rong Xu

Combustion characteristic of low calorific fuel gas in a pressurized porous burner was numerically investigated. The two-dimensional temperature profile, flame front, and CO concentration distribution were analyzed under the pressure at the certain operating parameters, and compared with those of the normal pressure. The results shows that the pressured temperature profile is more clear than that of the normal pressure, and maximum temperature distribution region is larger. Compared with the normal pressure, the pressured flame front location is at the downstream, and the flame propagation velocity along with inclination increases with the pressure increasing. The CO distribution is corresponding to the temperature profile. Its maximum locates at the position of the flame front, and gradually decreasing along the axial direction. It decreases with the pressure increasing, which indicates that the pressure contributes to improve the combustion efficiency.


Sign in / Sign up

Export Citation Format

Share Document