Gas turbine hot gas path components are protected through a combination of internal cooling and external film cooling. The coolant typically travels through internal passageways, which may involve impingement on the internal surface of a turbine component, before being ejected as film cooling. Internal cooling effects have been studied in facilities that allow measurement of heat transfer coefficients within models of the internal cooling paths, with large heat transfer coefficients generally desirable. External film cooling is typically evaluated through measurements of the adiabatic effectiveness and its effect on the external heat transfer coefficient.
Efforts aimed at improving cooling are often focused on either only the internal cooling or the film cooling; however, the common coolant flow means the internal and external cooling schemes are linked and the coolant holes themselves provide another convective path for heat transfer to the coolant. Recently, measurements of overall cooling effectiveness using matched Biot number turbine component models allow evaluation of the nondimensional wall temperature achieved for the fully cooled component. However, the relative contributions of internal cooling, external cooling, and convection within the film cooling holes is not well understood.
Large scale, matched Biot number experiments, complemented by CFD simulations, were performed on a fully film cooled cylindrical leading edge model to evaluate the effects of various alterations in the cooling design on the overall effectiveness. The relative influence of film cooling and cooling within the holes was evaluated by selectively disabling individual holes and quantifying how the overall effectiveness changed. Several internal impingement cooling schemes in addition to a baseline case without impingement cooling were also tested. In general, impingement cooling is shown to have a negligible influence on the overall effectiveness in the showerhead region. This indicates that the cost and pressure drop penalties for implementing impingement cooling may not be compensated by an increase in thermal performance. Instead, the internal cooling provided by convection within the holes themselves was shown, along with external film cooling, to be a dominant contribution to the overall cooling effectiveness. Indeed, the numerous holes within the showerhead region impede the ability of internal surface cooling schemes to influence the outside surface temperature. The results of this research may allow improved focus of future efforts on the forms of cooling with the greatest potential to improve cooling performance.