scholarly journals Influence of Charge Motion and Compression Ratio on the Performance of a Combustion Concept Employing In-Cylinder Gasoline and Natural Gas Blending

Author(s):  
James Sevik ◽  
Michael Pamminger ◽  
Thomas Wallner ◽  
Riccardo Scarcelli ◽  
Steven Wooldridge ◽  
...  

The present paper represents a small piece of an extensive experimental effort investigating the dual-fuel operation of a light-duty spark ignited engine. Natural gas (NG) was directly injected into the cylinder and gasoline was injected into the intake-port. Direct injection of NG was used in order to overcome the power density loss usually experienced with NG port-fuel injection as it allows an injection after intake valve closing. Having two separate fuel systems allows for a continuum of in-cylinder blend levels from pure gasoline to pure NG operation. The huge benefit of gasoline is its availability and energy density, whereas NG allows efficient operation at high load due to improved combustion phasing enabled by its higher knock resistance. Furthermore, using NG allowed a reduction of carbon dioxide emissions across the entire engine map due to the higher hydrogen-to-carbon ratio. Exhaust gas recirculation (EGR) was used to (a) increase efficiency at low and part-load operation and (b) reduce the propensity of knock at higher compression ratios (CR) thereby enabling blend levels with greater amount of gasoline across a wider operating range. Two integral engine parameters, CR and in-cylinder turbulence levels, were varied in order to study their influence on efficiency, emissions and performance over a specific speed and load range. Increasing the CR from 10.5 to 14.5 allowed an absolute increase in indicated thermal efficiency of more than 3% for 75% NG (25% gasoline) operation at 8 bar net indicated mean effective pressure and 2500 RPM. However, as anticipated, the achievable peak load at CR 14.5 with 100% gasoline was greatly reduced due to its lower knock resistance. The in-cylinder turbulence level was varied by means of tumble plates as well as an insert for the NG injector that guides the injection “spray” to augment the tumble motion. The usage of tumble plates showed a significant increase in EGR dilution tolerance for pure gasoline operation, however, no such impact was found for blended operation of gasoline and NG.

Author(s):  
James Sevik ◽  
Michael Pamminger ◽  
Thomas Wallner ◽  
Riccardo Scarcelli ◽  
Steven Wooldridge ◽  
...  

The present paper represents a small piece of an extensive experimental effort investigating the dual-fuel operation of a light-duty spark ignited engine. Natural gas (NG) was directly injected into the cylinder and gasoline was injected into the intake-port. Direct injection (DI) of NG was used in order to overcome the power density loss usually experienced with NG port-fuel injection (PFI) as it allows an injection after intake valve closing. Having two separate fuel systems allows for a continuum of in-cylinder blend levels from pure gasoline to pure NG operation. The huge benefit of gasoline is its availability and energy density, whereas NG allows efficient operation at high load due to improved combustion phasing enabled by its higher knock resistance. Furthermore, using NG allowed a reduction of carbon dioxide emissions across the entire engine map due to the higher hydrogen-to-carbon ratio. Exhaust gas recirculation (EGR) was used to (a) increase efficiency at low and part-load operation and (b) reduce the propensity of knock at higher compression ratios (CRs) thereby enabling blend levels with greater amount of gasoline across a wider operating range. Two integral engine parameters, CR and in-cylinder turbulence levels, were varied in order to study their influence on efficiency, emissions, and performance over a specific speed and load range. Increasing the CR from 10.5 to 14.5 allowed an absolute increase in indicated thermal efficiency of more than 3% for 75% NG (25% gasoline) operation at 8 bar net indicated mean effective pressure (IMEP) and 2500 rpm. However, as anticipated, the achievable peak load at CR 14.5 with 100% gasoline was greatly reduced due to its lower knock resistance. The in-cylinder turbulence level was varied by means of tumble plates (TPs) as well as an insert for the NG injector that guides the injection “spray” to augment the tumble motion. The usage of TPs showed a significant increase in EGR dilution tolerance for pure gasoline operation, however, no such impact was found for blended operation of gasoline and NG.


2005 ◽  
Vol 6 (5) ◽  
pp. 443-451 ◽  
Author(s):  
T Ishiyama ◽  
H Kawanabe ◽  
K Ohashi ◽  
M Shioji ◽  
S Nakai

In order to extend the available load range and obtain higher thermal efficiency in natural gas premixed charge compression ignition (PCCI) engines, a strategy for controlling direct injection combustion is discussed. Experimental results from single-cylinder engine tests demonstrate the possibility to extend load range by direct fuel injection. Reduced nozzle orifice size and reduced injection angle provide higher combustion efficiency; however, this promotes the tendency to knock because of the formation of a locally rich mixture. Arising from discussions based on prediction by computational fluid dynamics (CFD) code, considering mixture heterogeneity, it is suggested that controlling probability density functions (PDFs) of fuel concentration could be a means to control the rate of pressure rise. Restricted air utilization is useful to activate combustion at low overall equivalence ratios; on the other hand, full utilization of in-cylinder air and formation of a quantity of lean mixture can provide mild combustion.


Author(s):  
Reed Hanson ◽  
Andrew Ickes ◽  
Thomas Wallner

Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection of a higher reactivity fuel, otherwise known as Reactivity Controlled Compression Ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13L multi-cylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and direct injection of diesel fuel. Engine testing was conducted at an engine speed of 1200 RPM over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection quantity was reduced to keep peak cylinder pressure and maximum pressure rise rate under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar BMEP with a peak brake thermal efficiency of 47.6%.


Energy ◽  
2020 ◽  
Vol 197 ◽  
pp. 117173 ◽  
Author(s):  
Jeongwoo Lee ◽  
Cheolwoong Park ◽  
Jongwon Bae ◽  
Yongrae Kim ◽  
Sunyoup Lee ◽  
...  

Author(s):  
Valentin Soloiu ◽  
Martin Muiños ◽  
Tyler Naes ◽  
Spencer Harp ◽  
Marcis Jansons

In this study, the combustion and emissions characteristics of Reactivity Controlled Compression Ignition (RCCI) obtained by direct injection (DI) of S8 and port fuel injection (PFI) of n-butanol were compared with RCCI of ultra-low sulfur diesel #2 (ULSD#2) and PFI of n-butanol at 6 bar indicated mean effective pressure (IMEP) and 1500 rpm. S8 is a synthetic paraffinic kerosene (C6–C18) developed by Syntroleum and is derived from natural gas. S8 is a Fischer-Tropsch fuel that contains a low aromatic percentage (0.5 vol. %) and has a cetane number of 63 versus 47 of ULSD#2. Baselines of DI conventional diesel combustion (CDC), with 100% ULSD#2 and also DI of S8 were conducted. For both RCCI cases, the mass ratio of DI to PFI was set at 1:1. The ignition delay for the ULSD#2 baseline was found to be 10.9 CAD (1.21 ms) and for S8 was shorter at 10.1 CAD (1.12 ms). In RCCI, the premixed charge combustion has been split into two regions of high temperature heat release, an early one BTDC from ignition of ULSD#2 or S8, and a second stage, ATDC from n-butanol combustion. RCCI with n-butanol increased the NOx because the n-butanol contains 21% oxygen, while S8 alone produced 30% less NOx emissions when compared to the ULSD#2 baseline. The RCCI reduced soot by 80–90% (more efficient for S8). However, S8 alone showed a considerable increase in soot emissions compared with ULSD#2. The indicated thermal efficiency was the highest for the ULSD#2 and S8 baseline at 44%. The RCCI strategies showed a decrease in indicated thermal efficiency at 40% ULSD#2-RCCI and 42% and for S8-RCCI, respectively. S8 as a single fuel proved to be a very capable alternative to ULSD#2 in terms of combustion performance nevertheless, exhibited higher soot emissions that have been mitigated with the RCCI strategy without penalty in engine performance.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2571 ◽  
Author(s):  
Jingrui Li ◽  
Jietuo Wang ◽  
Teng Liu ◽  
Jingjin Dong ◽  
Bo Liu ◽  
...  

High-pressure direct-injection (HPDI) natural gas marine engines are widely used because of their higher thermal efficiency and lower emissions. The effects of different injection rate shapes on the combustion and emission characteristics were studied to explore the appropriate gas injection rate shapes for a low-speed HPDI natural gas marine engine. A single-cylinder model was established and the CFD model was validated against experimental data from the literature; then, the combustion and emission characteristics of five different injection rate shapes were analyzed. The results showed that the peak values of in-cylinder pressure and heat release rate profiles of the triangle shape were highest due to the highest maximum injection rate, which occurred in a phase close to the top dead center. The shorter combustion duration of the triangle shape led to higher indicated mean effective pressure (IMEP) and NOx emissions compared with other shapes. The higher initial injection rates of the rectangle and slope shapes had a negative effect on the ignition delay periods of pilot fuel, which resulted in lower in-cylinder temperature and NOx emissions. However, due to the lower in-cylinder temperature, the engine power output was also lower. Otherwise, soot, unburned hydrocarbon (UHC), and CO emissions and indicated specific fuel consumption (ISFC) increased for both rectangle and slope shapes. The trapezoid and wedge shapes achieved a good balance between fuel consumption and emissions.


Author(s):  
Kang Pan ◽  
James S. Wallace

This paper presents a numerical study on fuel injection, ignition and combustion in a direct-injection natural gas (DING) engine with ignition assisted by a shielded glow plug (GP). The shield geometry is investigated by employing different sizes of elliptical shield opening and changing the position of the shield opening. The results simulated by KIVA-3V indicated that fuel ignition and combustion is very sensitive to the relative angle between the fuel injection and the shield opening, and the use of an elliptical opening for the glow plug shield can reduce ignition delay by 0.1∼0.2ms for several specific combinations of the injection angle and shield opening size, compared to a circular shield opening. In addition, the numerical results also revealed that the natural gas ignition and flame propagation will be delayed by lowering a circular shield opening from the fuel jet center plane, due to the blocking effect of the shield to the fuel mixture, and hence it will reduce the DING performance by causing a longer ignition delay.


2006 ◽  
Vol 26 (8-9) ◽  
pp. 806-813 ◽  
Author(s):  
Ke Zeng ◽  
Zuohua Huang ◽  
Bing Liu ◽  
Liangxin Liu ◽  
Deming Jiang ◽  
...  

Author(s):  
Reed Hanson ◽  
Andrew Ickes ◽  
Thomas Wallner

Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection (DI) of a higher reactivity fuel, otherwise known as reactivity controlled compression ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13 l multicylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and DI of diesel fuel. Engine testing was conducted at an engine speed of 1200 rpm over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion (CDC) and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection (PFI) quantity was reduced to keep peak cylinder pressure (PCP) and maximum pressure rise rate (MPRR) under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar brake mean effective pressure (BMEP) with a peak brake thermal efficiency (BTE) of 47.6%.


Author(s):  
Luke H. Cowell ◽  
Amjad Rajput ◽  
Douglas C. Rawlins

A fuel injection system for industrial gas turbine engines capable of using natural gas and liquid fuel in dry, lean premixed combustion is under development to significantly reduce NOx and CO emissions. The program has resulted in a design capable of operating on DF#2 over the 80 to 100% engine load range meeting the current TA LUFT regulations of 96 ppm (dry, @ 15% O2) NOx and 78 ppm CO. When operating on natural gas the design meets the guaranteed levels of 25 ppm NOx and 50 ppm CO. The design approach is to apply lean premixed combustion technology to liquid fuel. Both injector designs introduce the majority of the diesel fuel via airblast alomization into a premixing passage where fuel vaporization and air-fuel premixing occur. Secondary fuel injection occurs through a pilot fuel passage which operates in a partially premixed mode. Development is completed through injector modeling, flow visualization, combustion rig testing, and engine testing. The prototype design tested in development engine environments has operated with NOx emissions below 65 ppm and 20 ppm CO at full load. This paper includes a detailed discussion of the injector design and qualification testing completed on this development hardware.


Sign in / Sign up

Export Citation Format

Share Document