Heavy Duty Engine Piston Cooling Gallery Oil Filling Ratio Measurement and Comparison of Results With Simulation

Author(s):  
Yu Chen ◽  
Shashank Moghe

Pistons for heavy duty diesel applications endure high thermal loads and therefore result in reduced durability. Pistons for such heavy duty applications are generally designed with an internal oil gallery — called the piston cooling gallery (PCG) — where the intent is to reduce the piston crown temperatures through forced convection cooling and thereby ensure the durability of the piston. One of the key factors influencing the efficiency of such a heat-transfer process is the volume fraction of oil inside the piston cooling gallery — defined as the filling ratio (FR) — during engine operation. As a part of this study, a motoring engine measurement system was developed to measure the piston filling ratio of an inline-6 production heavy duty engine. In this system, multiple high precision pressure sensors were applied to the piston cooling gallery and a linkage was designed and fabricated to transfer the piston cooling gallery oil pressure signal out of the motoring engine. This pressure information was then correlated with the oil filling ratio through a series of calibration runs with known oil quantity in the piston cooling gallery. This proposed method can be used to measure the piston cooling gallery oil filling ratio for heavy duty engine pistons. A preliminary transient Computational Fluid Dynamics (CFD) analysis was performed to identify the filling ratio and transient pressures at the corresponding transducer locations in the piston cooling gallery for one of the motoring test operating speeds (1200 RPM). A mesh dependency study was performed for the CFD analysis and the results were compared against those from the motoring test.

Author(s):  
Rudolf H. Stanglmaier ◽  
Philip J. Dingle ◽  
Daniel W. Stewart

A system for coinjecting mixtures of diesel fuel and water into a heavy-duty diesel engine has been developed and evaluated at the Southwest Research Institute. This system features prototype Lucas electronically controlled injectors, full electronic control, and can vary the percentage of water in the mixture on a cycle-resolved basis. Tests of this system were conducted on a production Volvo D-12 engine, and have produced reduced NOx and smoke emissions over steady-state and transient conditions. Water-diesel coinjection yielded a considerable improvement in NOx-smoke and NOx-BSFC trade-offs under steady-state engine operation. In addition, control of the water percentage on a cycle-resolved basis was shown to be an effective method for mitigating NOx and smoke emissions over step-load transients. Results from this work show that a combination of aggressive EGR and diesel+water coinjection is very promising for producing very low levels of engine-out exhaust emissions, reducing the water storage requirements, and improving fuel efficiency. Further refinement of this injection technology is in progress.


Author(s):  
Rudolf H. Stanglmaier ◽  
Philip J. Dingle ◽  
Daniel W. Stewart

A system for co-injecting mixtures of diesel fuel and water into a heavy-duty diesel engine has been developed and evaluated at the Southwest Research Institute. This system features prototype Lucas EUI injectors, full electronic control, and can vary the percentage of water in the mixture on a cycle-resolved basis. Tests of this system were conducted on a production Volvo D-12 engine, and have produced very encouraging results. Water-diesel co-injection yielded a considerable improvement in NOx-smoke and NOx-BSFC trade-offs under steady-state engine operation. In addition, control of the water percentage on a cycle-resolved basis was shown to be an effective method for mitigating NOx and smoke emissions over step-load transients. Results from this work show that a combination of aggressive EGR and diesel+water co-injection is very promising for producing very low levels of engine-out exhaust emissions, reducing the water storage requirements, and improving fuel efficiency. Further refinement of this injection technology is in progress.


Author(s):  
W. Stuart Neill ◽  
Gregory J. Smallwood ◽  
David R. Snelling ◽  
Robert A. Sawchuk ◽  
Dan Clavel ◽  
...  

The regulations governing diesel engine particulate matter (PM) and oxides of nitrogen (NOx) emissions are becoming increasingly stringent. New instrumentation is urgently needed to make accurate and precise measurements of PM emissions from low-emitting engines and emission control systems in a reasonable amount of time. Laser-induced incandescence (LII) is a technique for making temporally resolved measurements of soot volume fraction. LII offers real-time particulate concentration measurements over several orders of magnitude, and adds desirable information about particulate size and surface area. In this study, the exhaust gas recirculation (EGR) system of a heavy-duty diesel engine was tuned at eight speed/load conditions using quantitative LII. Soot concentrations measured by LII correlated strongly with measurements taken using the standard gravimetric technique and an AVL smoke meter.


2017 ◽  
Vol 19 (7) ◽  
pp. 774-789 ◽  
Author(s):  
Mojtaba Ebrahimi ◽  
Mohammad Najafi ◽  
Seyed Ali Jazayeri ◽  
Ali Reza Mohammadzadeh

The aim of this study is to investigate in details the effects of a number of combustion parameters to optimize the reactivity controlled compression ignition operation running on natural gas and diesel fuel. In the present work, a single-cylinder heavy-duty diesel engine with a specially modified bathtub piston bowl profile for reactivity controlled compression ignition operation is studied and simulated through commercial software. A broad load range from 5.6 to 13.5 bar indicated mean effective pressure at a constant engine speed of 1300 r/min, fixed amount of diesel fuel mass, and with no exhaust gas recirculation is considered. The results from the developed model confirm that the model can accurately simulate the reactivity controlled compression ignition combustion. Also, by focusing on the time of formation of certain important radicals in combustion, the start of combustion and the time of natural gas dissociation are accurately predicted. Furthermore, the influence of some parameters such as different diesel fuel injection strategies, intake temperature, and intake pressure on the reactivity controlled compression ignition combustion is evaluated and the limitation of the engine operation at low temperature combustion is investigated.


Author(s):  
Erwin Schalk ◽  
Herwig Ofner ◽  
Christian Doppler ◽  
Steffen Daum ◽  
Alois Danninger ◽  
...  

Exhaust gas recirculation (EGR) is an effective engine internal measure to reduce NOx emissions. This is e.g. constituted by the fact that the NOx limit of the current European on-road emission regulation EURO V can be met exclusively by the application of EGR (an overview on emissions regulations is e.g. given in [1]). However, the proposed NOx limits for the upcoming regulations have been lowered significantly which implicates much higher EGR rates compared to the EURO V applications if this strategy is further pursued. This is valid for both the future on-road regulation (EURO VI) and the off-road regulation (Stage IV). In this paper main focus is laid on off-road applications. One of the main challenges of this task refers to transient engine operation which also requires EGR. Thus, great demands are made to the design and calibration of the charging system in order to guarantee acceptable load response characteristics during the acceleration phases. An experimental study was carried out with a modified EURO V heavy duty engine which was operated in an engine test cell under stationary and transient conditions with various engine settings. These primarily referred to the EGR rate and smoke limitations during transient operation. In this way the NOx, soot and load response characteristics were systematically investigated. With the used test engine the NOx emissions could not be lowered below a level of approximately 0.6 g/kWh in the Non-Road Transient Test Cycle (NRTC) [1] without a significant deterioration in load response (for comparison — the proposed Stage IV NOx limit is 0.4 g/kWh in the NRTC).


Author(s):  
Roberto Torelli ◽  
Yuanjiang Pei ◽  
Yu Zhang ◽  
Michael Traver ◽  
Sibendu Som

Abstract Measurements of fuel injectors via non-destructive X-ray techniques can provide unique insights about an injector’s internal surface. Using real measured geometry rather than nominal design geometry in computational fluid dynamics simulations can improve the accuracy of the numerical models dramatically. Recent work from the authors investigated the influence of the injector design on the internal flow development and occurrence of cavitation in a production multi-hole heavy-duty diesel injector operating with a straight-run gasoline for gasoline compression ignition (GCI) applications. This was achieved by evaluating a series of design parameters which showed that the intensity and duration of cavitation structures could be mitigated by acting on certain injector parameters such as K-factor, orifice inlet ellipticity, and sac-to-orifice radius of curvature. In the present work, the findings from the previous parametric study were combined to generate two attempts at improving the injector design and numerically evaluate their ability to suppress cavitation inside the orifices at three levels of injection pressure (1000, 1500, and 2500 bar), while operating with the same high-volatility gasoline fuel. Qualitative and quantitative analyses showed that, compared to the results obtained with the original X-ray scanned geometry, the improved designs were able to prevent fuel vapor formation at the two lowest injection pressures and avoid super-cavitation at the higher pressure. It was shown that these results were due to the strong influence that the orifice shape can have on the pressure and fuel vapor volume fraction distributions within the orifices. The informed design choices proposed in this study can therefore be vital for extending the durability and reliability of heavy-duty injectors for GCI applications.


2021 ◽  
Author(s):  
Kimmo Korhonen ◽  
Thomas Bjerring Kristensen ◽  
John Falk ◽  
Vilhelm B. Malmborg ◽  
Axel Eriksson ◽  
...  

Abstract. We studied ice-nucleating abilities of particulate emissions from a modern heavy-duty diesel engine using three different types of fuel. The polydisperse particle emissions were sampled during engine operation and introduced to a continuous-flow diffusion chamber (CFDC) instrument at a constant relative humidity RHwater = 110 %, and temperature was ramped between −43 °C and −32 °C (T-scan). The tested fuels were EN 590 compliant low-sulfur fossil diesel, hydrotreated vegetable oil (HVO) and rapeseed methyl ester (RME), and all were investigated without blending. Sampling was carried out at different stages in the engine exhaust after-treatment system, with and without simulated atmospheric processing using an oxidation flow reactor. In addition to ice-nucleation experiments, we used supportive instrumentation to characterize the emission particles and present six different physical and chemical properties of them. We found that the studied emissions were poor ice-nucleators and substitution of fossil diesel with renewable fuels, using different emission after-treatment systems and photochemical aging of total exhaust had only little effect on their ice-nucleating abilities.


2017 ◽  
Vol 5 (6) ◽  
pp. 1439-1447
Author(s):  
BVamsi Krishna ◽  
◽  
N Anjaneyulu ◽  
PChenna Rao ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document