Numerical Investigation of the Combined Effects of Biomolecular Adsorption and Microdroplet Evaporation on the Performance of the Electrocapillary-Based Digital Microfluidic Systems
In this article, microdroplet motion in the electrocapillary-based digital microfluidic systems is modeled accurately, and the combined effects of the biomolecular adsorption and micro-droplet evaporation on the performance of the device are investigated. An electrohydrodynamic approach is used to model the driving and resisting forces, and Fick’s law and Gibbs equation are used to calculate the microdroplet evaporation and adsorption rate. Effects of the adsorption and evaporation rates are then implemented into the microdroplet dynamics by adding new terms into the force balance equation. It is shown that mass loss due to the evaporation tends to increase the protein concentration, and on the other hand, the increased concentration due to the mass loss increases the biomolecular adsorption rate which has a reverse effect on the concentration. The modeling results indicate that evaporation and adsorption play crucial roles in the microdroplet dynamics.