This work presents some new methods in optimizing electrical energy, harvested using a micro piezoelectric cantilever. Both mechanical and electrical aspects have been considered. Mechanically, two items have been considered to maximize the generated voltage: geometry of the cantilever and placement of the electrodes. It has been shown that for given sizes of length and width of the harvester and for a given natural frequency, the output voltage can be increased by adjusting the thickness of the beam and the proof mass and consequently increasing the amplitude of vibration. As well, the placement of the electrodes plays a very important role in optimizing output voltage. It has also been shown that piezoelectric cantilevers with shorter top electrodes induce higher voltage than cantilevers with longer top electrodes. Overall results agree with the analytical equations reported in literature so far. Moreover, distribution of top electrodes along the width of the cantilever has been taken into consideration. It has been shown how output voltage can be approximately doubled by using two narrower top electrodes along the width of the cantilever. All analysis in this work was carried out in ANSYS. In this research, to improve the electrical efficiency, diodes have been considered in the circuit to reduce electrical losses in comparison to rectifiers which have been used in conventional harvesters. Applying these methods to particular test cases, a 71% increase in output voltage was observed for the case of geometry optimization, a 116% increase was observed for the case of shortening the top electrode and losses in the electrical circuit were reduced by approximately 50% by using diodes comparing to using rectifiers. While these results focused on cantilever based harvesters, the ideas contained are equally applicable to other structures.