Pressurizer is one of the most important components in reactor coolant system of a nuclear power plant, which operates normally at pressure of 15.4 MPa and temperature of 345°C[1]. The main function of pressurizer is to regulate the pressure in the reactor coolant system by either cooling the steam or heating the saturated water in its upper zone. When the pressure in the reactor coolant system increases, it will distribute cold water to decrease its temperature and pressure through atomizing the reactor coolant with swirl spray nozzle in pressurizer. Swirl nozzle is the key part of pressurizer with swirl structure of full cone spray pattern, and the atomization performance include drop size, spray angle and distribution, also it is characterized by huge flow rate and low pressure drop, and its atomization performance decides the quality of pressure control of the reactor coolant system. To enhance the independent design level of both pressurizer and cooling system, it’s necessary to study the atomization performance of swirl nozzle for nuclear reactor pressurizer.
Aimed at improving atomization performance of swirl spray nozzle, the structure design methodology of nuclear reactor pressurizer was studied systematically in three aspects including theory design, numerical simulation and test confirm in this thesis. Through designing the swirl nozzle structure according to similar design formula of spray nozzle in theory, especially studying the influence of different structures that mainly include internal swirl structure on internal flow field of swirl nozzles, the primary structure parameters of swirl nozzle were confirmed. Then, through numerical simulation of the internal flow field, flow rate and pressure drop, and swirl core structure of the swirl nozzle (by building physical model and mathematic model according to the spray nozzle structure), the atomization performance of the nozzle was analyzed. On this basis, the typical swirl nozzle was designed and tested, which included spray angle, flow rate as well as pressure drop tests, and spray drop tests, and the applicability of the computational fluid dynamics (CFD) method was verified when it was applied in swirl nozzle design. Finally, the design method of swirl nozzle with deep groove of swirl core for pressurizer was put forward.
Through this studying of theoretical calculation, numerical simulating and test, the correlation between the structural parameters of swirl nozzle and atomization performance was achieved, meanwhile design, analysis and test methods of spray nozzle with low pressure drop and huge flow rate were established. It is helpful to realize the independent design of pressurizer’s swirl nozzle and even to put forward the design methodology of pressurizer’s swirl nozzle with our own characteristic.