A Mesoscale Model for Molecular Interaction in Functionalized Nanopores
Nanopores have been used to detect DNA translocation and gene detection. However, the interaction between DNA and nanopore is still not well understood due to the small size of DNA/nanopore and dynamic translocation process. Very recently, various chemical modifications have been applied on nanopore surface for improved signal yield and selective detection. Thus, it is important to characterize the interaction between DNA and chemically modified nanopores. This paper intends to develop an understanding of the interaction between DNA and chemically modified nanopore surface and the translocation process of DNA by probing the DNA-nanopore interaction mechanisms through computational modeling. The DNA-nanopore interaction will be explored through a model that links atomistic DNA-nanopore interaction to meso-scale particle dynamics. Critical interrelationships between physical properties of the nanopore (surface properties, sizes, roughness etc.), electric field strength, and translocation kinetics will be established. This research not only advances the molecular-level understanding of the DNA-nanopore interface, but would also help design lab-on-chip devices for molecule based diagnosis.