Ghost Fluid Based Immersed Boundary Treatment for Lattice Boltzmann Method
An immersed boundary method has been developed for Lattice Boltzmann Equations via ghost fluid approach. Image points of the ghost points inside the fluid domain are obtained by extrapolation along the boundary normal. Velocity, density and non-equilibrium value of the distribution function at ghost points are extrapolated from image point values which are calculated by interpolation from the boundary and fluid domain. The distribution function at ghost points is computed from the extrapolated non-equilibrium part and the equilibrium part which is obtained from extrapolated values of the velocities. The method is found to be second order accurate. The method is applied to concentric 2D Couette flow and 3D Taylor–Couette flow.