spring network model
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
pp. 103947
Author(s):  
Deepak Kumar ◽  
Anuradha Banerjee ◽  
R. Rajesh

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Zhong Yun ◽  
Chuang Xiang ◽  
Liang Wang

Researches on the principle of human red blood cell’s (RBC) injuring and judgment basis play an important role in decreasing the hemolysis in a blood pump. In the current study, the judgment of hemolysis in a blood pump study was through some experiment data and empirical formula. The paper forms a criterion of RBC’s mechanical injury in the aspect of RBC’s free energy. First, the paper introduces the nonlinear spring network model of RBC in the frame of immersed boundary-lattice Boltzmann method (IB-LBM). Then, the shape, free energy, and time needed for erythrocyte to be shorn in different shear flow and impacted in different impact flow are simulated. Combining existing research on RBC’s threshold limit for hemolysis in shear and impact flow with this paper’s, the RBC’s free energy of the threshold limit for hemolysis is found to be 3.46 × 10 − 15  J. The threshold impact velocity of RBC for hemolysis is 8.68 m/s. The threshold value of RBC can be used for judgment of RBC’s damage when the RBC is having a complicated flow of blood pumps such as coupling effect of shear and impact flow. According to the change law of RBC’s free energy in the process of being shorn and impacted, this paper proposed a judging criterion for hemolysis when the RBC is under the coupling effect of shear and impact based on the increased free energy of RBC.


2020 ◽  
Vol 92 (10) ◽  
pp. 1368-1393 ◽  
Author(s):  
Iveta Jančigová ◽  
Kristína Kovalčíková ◽  
Alžbeta Bohiniková ◽  
Ivan Cimrák

2018 ◽  
Vol 18 (08) ◽  
pp. 1840032
Author(s):  
ZHONG YUN ◽  
CHUANG XIANG ◽  
LIANG WANG

The vibrations in blood pumps were often caused by high speed, suspension structure, viscoelastic implantation environment and other factors in practical application. Red blood cell (RBC) was modeled using a nonlinear spring network model. The immersed boundary-lattice Boltzmann method (IB-LBM) was used to investigate the impact of high-frequency vibration boundary on RBC. To confirm the RBC model, the simulation results of RBC stretching were compared with experimental results. We examined the force acting on RBC membrane nodes; moreover, we determined whether RBC energy was affected by different frequencies, amplitudes, and vibration models of the boundary. Furthermore, we examined whether RBC energy was affected by the distance between the top and bottom boundaries. The energy of RBCs in shear flow disturbed by the vibration boundary was also investigated. The results indicate that larger amplitude (Am), frequency (Fr), and opposite vibration velocity of top and bottom boundary produced a larger force that acted on RBC membrane nodes and larger energy changes in RBCs. The vibration boundary may cause turbulence and alter RBC energy. When the blood pump was designed and optimized, the vibration frequency and amplitude of the blood pump body and impeller should be reduced, the phase of the blood pump body and impeller vibration velocity should be close. To alleviate the free energy of RBCs and to reduce RBC injury in the blood pump, the distance between RBCs and the boundary should not be less than 20[Formula: see text][Formula: see text]m.


2016 ◽  
Vol 13 (124) ◽  
pp. 20160809 ◽  
Author(s):  
Ashwij Mayya ◽  
P. Praveen ◽  
Anuradha Banerjee ◽  
R. Rajesh

We examine the specific role of the structure of the network of pores in plexiform bone in its fracture behaviour under compression. Computed tomography scan images of the sample pre- and post-compressive failure show the existence of weak planes formed by aligned thin long pores extending through the length. We show that the physics of the fracture process is captured by a two-dimensional random spring network model that reproduces well the macroscopic response and qualitative features of fracture paths obtained experimentally, as well as avalanche statistics seen in recent experiments on porcine bone.


2014 ◽  
Vol 116 (6) ◽  
pp. 628-634 ◽  
Author(s):  
Baoshun Ma ◽  
Jason H. T. Bates

The forces of mechanical interdependence between the airways and the parenchyma in the lung are powerful modulators of airways responsiveness. Little is known, however, about the extent to which adjacent airways affect each other's ability to narrow due to distortional forces generated within the intervening parenchyma. We developed a two-dimensional computational model of two airways embedded in parenchyma. The parenchyma itself was modeled in three ways: 1) as a network of hexagonally arranged springs, 2) as a network of triangularly arranged springs, and 3) as an elastic continuum. In all cases, we determined how the narrowing of one airway was affected when the other airway was relaxed vs. when it narrowed to the same extent as the first airway. For the continuum and triangular network models, interactions between airways were negligible unless the airways lay within about two relaxed diameters of each other, but even at this distance the interactions were small. By contrast, the hexagonal spring network model predicted that airway-airway interactions mediated by the parenchyma can be substantial for any degree of airway separation at intermediate values of airway contraction forces. Evidence to date suggests that the parenchyma may be better represented by the continuum model, which suggests that the parenchyma does not mediate significant interactions between narrowing airways.


Sign in / Sign up

Export Citation Format

Share Document