Bifurcation Analysis of a Fermi-Acceleration Oscillator Under Different Excitations

Author(s):  
Albert C. J. Luo ◽  
Yu Guo

In this paper, switchability and bifurcation of motions in a double excited Fermi acceleration oscillator is discussed using the theory of discontinuous dynamical systems. The two oscillators are chosen to have different excitation and parameters. The analytical conditions for motion switching in such a Fermi-oscillator are presented. Bifurcation scenario for periodic and chaotic motions is presented, and the analytical predictions of periodic motions are presented. Finally, different motions in such an oscillator are illustrated.

Author(s):  
Albert C. J. Luo ◽  
Yu Guo

In this paper, switchability and bifurcation of motions in a double excited Fermi acceleration oscillator is discussed using the theory of discontinuous dynamical systems. The analytical conditions for motion switching in such a Fermi-oscillator are presented. Bifurcation scenario for periodic and chaotic motions is presented, and the analytical predictions of periodic motions are presented. Finally, periodic and chaotic motions in such an oscillator are illustrated.


Author(s):  
Albert C. J. Luo ◽  
Yu Guo

In this paper, an extended model of the Fermi-acceleration oscillator is presented to describe impacting chatters, grazing, and sticking between the particle (or bouncing ball) and piston. The sticking phenomenon in such a system is investigated for the first time. Even in the traditional Fermi-oscillator, such a sticking phenomenon still exists but one often ignored it. In this paper, the analytical conditions for the grazing and sticking phenomena between the particle and piston in the Fermi-acceleration oscillator are developed from the theory of discontinuous dynamical systems. Compared with existing studies, the four exact mappings are used to analyze the motion behaviors of the Fermi-oscillator instead of one or two mappings. Mapping structures formed by generic mappings are adopted for the analytical predictions of periodic motions in the Fermi-acceleration oscillator. Periodic and chaotic motions in such an oscillator are illustrated to show motion complexity and grazing and sticking mechanism. Once the masses of the ball and primary mass are in the same quantity level, the model presented in this paper will be very useful and significant. This idea can apply to a system possessing two independent oscillators with impact, such as gear transmission systems, bearing systems, and time-varying billiard systems.


2013 ◽  
Vol 23 (03) ◽  
pp. 1330009 ◽  
Author(s):  
ALBERT C. J. LUO ◽  
MOZHDEH S. FARAJI MOSADMAN

In this paper, the analytical dynamics for singularity, switchability, and bifurcations of a 2-DOF friction-induced oscillator is investigated. The analytical conditions of the domain flow switchability at the boundaries and edges are developed from the theory of discontinuous dynamical systems, and the switchability conditions of boundary flows from domain and edge flows are presented. From the singularity and switchability of flow to the boundary, grazing, sliding and edge bifurcations are obtained. For a better understanding of the motion complexity of such a frictional oscillator, switching sets and mappings are introduced, and mapping structures for periodic motions are adopted. Using an eigenvalue analysis, the stability and bifurcation analysis of periodic motions in the friction-induced system is carried out. Analytical predictions and parameter maps of periodic motions are performed. Illustrations of periodic motions and the analytical conditions are completed. The analytical conditions and methodology can be applied to the multi-degrees-of-freedom frictional oscillators in the same fashion.


Author(s):  
Albert C. J. Luo ◽  
Arun Rajendran

In this paper, the dynamic characteristics of a simplified van der Pol oscillator are investigated. From the theory of nonsmooth dynamics, the structures of periodic and chaotic motions for such an oscillator are developed via the mapping technique. The periodic motions with a certain mapping structures are predicted analytically for m-cycles with n-periods. Local stability and bifurcation analysis for such motions are carried out. The (m:n)-periodic motions are illustrated. The further investigation of the stable and unstable periodic motions in such a system should be completed. The chaotic motion based on the Levinson donuts should be further discussed.


Author(s):  
Yu Guo ◽  
Albert C. J. Luo

In this paper, the theory of flow switchability for discontinuous dynamical systems is applied. Domains and boundaries for such a discontinuous problem are defined and analytical conditions for motion switching are developed. The conditions explain the important role of switching phase on the motion switchability in such a system. To describe different motions, the generic mappings and mapping structures are introduced. Bifurcation scenarios for periodic and chaotic motions are presented for different motions and switchability. Numerical simulations are provided for periodic motions with impacts only and with impact chatter to stick in the system.


Author(s):  
Albert C. J. Luo ◽  
Yu Guo

The Fermi acceleration oscillator is extensively used to interpret many physical and mechanical phenomena. To understand dynamic behaviors of a particle (or a bouncing ball) in such a Fermi oscillator, a generalized Fermi acceleration model is developed. This model consists of a particle moving vertically between a fixed wall and the piston in a vibrating oscillator. The motion switching bifurcation of a particle in such a generalized Fermi oscillator is investigated through the theory of discontinuous dynamical systems. The analytical conditions for the motion switching are developed for numerical predictions. Thus, periodic motions in the Fermi-acceleration oscillator are given and the corresponding local stability and bifurcation are presented. Periodic and chaotic motions in such an oscillator are presented via the displacement time-history. From switching bifurcation and period-doubling bifurcation, parameter maps of periodic and chaotic motions will be developed for a global view of motions in the Fermi acceleration oscillator. To illustrate motion switching phenomena, the acceleration responses of the particle and base in the Fermi oscillator are presented. Poincare mapping sections are also used to illustrate chaos, and energy dissipation in chaotic motions can be evaluated.


2011 ◽  
Vol 21 (07) ◽  
pp. 1813-1829 ◽  
Author(s):  
ALBERT C. J. LUO ◽  
FUHONG MIN

In this paper, the analytical conditions for the controlled pendulum synchronizing with periodic motions in the Duffing oscillator are developed using the theory of discontinuous dynamical systems. From the analytical conditions, the synchronization invariant domain is obtained. The partial and full synchronizations of the controlled pendulum with periodic motions in the Duffing oscillator are discussed. The control parameter map for the synchronization is achieved from the analytical conditions, and numerical illustrations of the partial and full synchronizations are carried out to illustrate the analytical conditions. This synchronization is different from the controlled Duffing oscillator synchronizing with chaotic motion in the periodically excited pendulum. Because the periodically forced, damped Duffing oscillator possesses periodic and chaotic motions, further investigation on the controlled pendulum synchronizing with complicated periodic and chaotic motions in the Duffing oscillator will be accomplished in sequel.


2009 ◽  
Vol 2009 ◽  
pp. 1-40 ◽  
Author(s):  
A. C. J. Luo ◽  
Y. Guo

Dynamic behaviors of a particle (or a bouncing ball) in a generalized Fermi-acceleration oscillator are investigated. The motion switching of a particle in the Fermi-oscillator causes the complexity and unpredictability of motion. Thus, the mechanism of motion switching of a particle in such a generalized Fermi-oscillator is studied through the theory of discontinuous dynamical systems, and the corresponding analytical conditions for the motion switching are developed. From solutions of linear systems in subdomains, four generic mappings are introduced, and mapping structures for periodic motions can be constructed. Thus, periodic motions in the Fermi-acceleration oscillator are predicted analytically, and the corresponding local stability and bifurcations are also discussed. From the analytical prediction, parameter maps of periodic and chaotic motions are achieved for a global view of motion behaviors in the Fermi-acceleration oscillator. Numerical simulations are carried out for illustrations of periodic and chaotic motions in such an oscillator. In existing results, motion switching in the Fermi-acceleration oscillator is not considered. The motion switching for many motion states of the Fermi-acceleration oscillator is presented for the first time. This methodology will provide a useful way to determine dynamical behaviors in the Fermi-acceleration oscillator.


2012 ◽  
Vol 22 (04) ◽  
pp. 1250093 ◽  
Author(s):  
ALBERT C. J. LUO ◽  
JIANZHE HUANG

In this paper, the analytical solutions for period-m flows and chaos in nonlinear dynamical systems are presented through the generalized harmonic balance method. The nonlinear damping, periodically forced, Duffing oscillator was investigated as an example to demonstrate the analytical solutions of periodic motions and chaos. Through this investigation, the mechanism for a period-m motion jumping to another period-n motion in numerical computation is found. In this problem, the Hopf bifurcation of periodic motions is equivalent to the period-doubling bifurcation via Poincare mappings of dynamical systems. The stable and unstable period-m motions can be obtained analytically. Even more, the stable and unstable chaotic motions can be achieved analytically. The methodology presented in this paper can be applied to other nonlinear vibration systems, which is independent of small parameters.


2012 ◽  
Vol 22 (11) ◽  
pp. 1250268 ◽  
Author(s):  
YU GUO ◽  
ALBERT C. J. LUO

In this paper, complex motions and chaos in the periodically driven horizontal impact pair are investigated using the theory of switchability for discontinuous dynamical systems. Domains and boundaries are defined due to the discontinuity caused by impacts. Analytical conditions for switching of stick and grazing motions are derived in detail. Generic mappings are introduced to describe different periodic motions and to identify the mapping structures of chaos. The periodic motions in such impact pair are analytically predicted, and the corresponding stability and bifurcation analysis of periodic motions are carried out. Parameter maps with different types of motions are developed. Periodic and chaotic motions with different mapping structures are illustrated numerically for a better understanding of physics of ball motions in the impact pair.


Sign in / Sign up

Export Citation Format

Share Document