Actuator Array Manipulation Using Low Resolution Local Sensing
An actuator array is a planar distributed manipulation system that uses multiple two degree-of-freedom actuators to manipulate objects with three degrees of freedom (x, y and θ). This paper presents an accurate method of estimating position and orientation of an object using local sensing and communication. In this method, each of the distributed modules contains a number of binary sensors, weight sensors, and two planar actuators. The binary sensors combined together give a binary image and analog sensors in each module combined together form a grayscale image representation of the weight distribution of the object under manipulation. Additive normalization has been used to combine binary and grayscale distributed sensing images together to come up with increased precision estimates of the position and orientation of an object. A distributed sensing simulation has been developed in Simulink and the effectiveness of this method has been verified for rectangular and circular objects using the Simulink model.