Effects of Rapid Microwave-Curing on Mechanical and Piezoresistive Sensing Properties of Elastomeric Nanocomposites

Author(s):  
Blake Herren ◽  
Mrinal C. Saha ◽  
M. Cengiz Altan ◽  
Yingtao Liu

Abstract Carbon nanotubes (CNTs) have the unique ability to absorb microwave radiation and efficiently transfer the energy into substantial heat. When adequately dispersed in a thermoset polymer, such as polydimethylsiloxane (PDMS), the nanocomposite can be fully cured in seconds in a microwave oven rather than in hours in a convection oven. In this paper, cylindrical PDMS nanocomposites containing well-dispersed CNTs are fabricated by either microwave-curing or conventional thermal-curing. The mechanical, electrical, and piezoresistive properties of the fabricated samples are compared to understand the effects of different curing methods. Microwave-cured nanocomposites exhibit a significantly reduced compressive modulus for different CNT loadings. In addition, the electrical conductivity of microwave-cured nanocomposites is significantly enhanced over the thermally-cured counterparts. Experimental results demonstrate that the one-step microwave-curing procedure can improve the electrical conductivity of 1 wt% nanocomposites by almost 150 % over thermal-curing. However, their piezoresistive sensitivity remains remarkably similar, showing the potential for microwave-curing to replace thermal-curing for the manufacturing of highly flexible CNT-based nanocomposites.

Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1212 ◽  
Author(s):  
Blake Herren ◽  
Preston Larson ◽  
Mrinal Saha ◽  
Yingtao Liu

Nanocomposites consisting of polydimethylsiloxane (PDMS) and well-dispersed carbon nanotubes (CNT) can be cured by microwave radiation within a minute, forming a conductive network within the cured materials. Microwave irradiation delivers energy directly to the inner core of the nanocomposites by heating CNTs and initiating rapid polymerization of the elastomer. In this paper, nanocomposites were fabricated with CNT loadings between 0.5 wt.%–2.5 wt.% via microwave irradiation. Key properties of the nanocomposites including electrical conductivity, microstructures, CNT distribution, density, and surface effects were all characterized. The properties of microwave-cured nanocomposites were compared with those manufactured by the thermal method using a conventional oven. The microwave-curing method substantially increased the electrical conductivity of the nanocomposites due to the improved nanoparticle dispersion and likely CNT alignment. Optimal microwave-curing parameters were identified to further improve the conductivity of the nanocomposites with lowest CNT loading. A conductivity enhancement of 142.8% over thermally cured nanocomposites was achieved for nanocomposites with 1 wt.% CNTs cured via one-step microwave irradiation.


2021 ◽  
pp. 004051752199981
Author(s):  
Sungeun Shin ◽  
Eugene Lee ◽  
Gilsoo Cho

Highly conductive nylon 6 nanofiber web was fabricated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and dimethyl sulfoxide (DMSO) for electronic textiles. To improve electrical conductivity, repeated coating with PEDOT:PSS and multi-step treatment of DMSO was performed. The effects of these treatments on electrical conductivity, surface properties, and chemical structures were investigated. For repetitive coating cycles, pristine PEDOT:PSS dispersion was dropped onto a nylon 6 nanofiber web for between one and four times of coating. For DMSO multi-step treatment, in the one-step treatment, the nanofiber web was repeatedly treated using PEDOT:PSS doped with DMSO. In the two-step treatment, the nanofiber web was repeatedly treated with doped PEDOT:PSS at first and, then, it was immersed in a DMSO bath. As a result, the sheet resistance decreased dramatically as the number of coating cycles increased. When the two-step treatment was applied, the sheet resistance was much lower compared to that of the one-step treatment, and thereby sample PD4-D with the lowest resistance showed 6.56 Ω/sq. As a result, the surface of the nanofiber web was covered with more PEDOT:PSS as the coating cycle was repeated. The PEDOT particles became large and long shapes after the two-step treatment of DMSO. This inferred that the contact area among conducting PEDOT particles increased because insulating PSS was removed by DMSO. In addition, the presence of PEDOT:PSS and nylon 6 was confirmed. This study proved that the simultaneous treatments of repeated coating with PEDOT:PSS and multi-step treatment of DMSO can improve electrical conductivity, and it developed the highly conductive PEDOT:PSS/nylon 6 nanofiber web.


2020 ◽  
Vol 24 (4) ◽  
pp. 465-471 ◽  
Author(s):  
Zita Rádai ◽  
Réka Szabó ◽  
Áron Szigetvári ◽  
Nóra Zsuzsa Kiss ◽  
Zoltán Mucsi ◽  
...  

The phospha-Brook rearrangement of dialkyl 1-aryl-1-hydroxymethylphosphonates (HPs) to the corresponding benzyl phosphates (BPs) has been elaborated under solid-liquid phase transfer catalytic conditions. The best procedure involved the use of triethylbenzylammonium chloride as the catalyst and Cs2CO3 as the base in acetonitrile as the solvent at room temperature. The substrate dependence of the rearrangement has been studied, and the mechanism of the transformation under discussion was explored by quantum chemical calculations. The key intermediate is an oxaphosphirane. The one-pot version starting with the Pudovik reaction has also been developed. The conditions of this tandem transformation were the same, as those for the one-step HP→BP conversion.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Babacar Faye ◽  
Mouhamed Sarr ◽  
Khaly Bane ◽  
Adjaratou Wakha Aidara ◽  
Seydina Ousmane Niang ◽  
...  

This study evaluated the one-year clinical performance of a one-step, self-etch adhesive (Optibond All-in-One, Kerr, CA, USA) combined with a composite (Herculite XRV Ultra, Kerr Hawe, CA, USA) to restore NCCLs with or without prior acid etching. Restorations performed by the same practitioner were evaluated at baseline and after 3, 6, and 12 months using modified USPHS criteria. At 6 months, the recall rate was 100%. The retention rate was 84.2% for restorations with prior acid etching, but statistically significant differences were observed between baseline and 6 months. Without acid etching, the retention rate was 77%, and no statistically significant difference was noted between 3 and 6 months. Marginal integrity (93.7% with and 87.7% without acid etching) and discoloration (95.3% with and 92.9% without acid etching) were scored as Alpha or Bravo, with better results after acid etching. After one year, the recall rate was 58.06%. Loss of pulp vitality, postoperative sensitivity, or secondary caries were not observed. After one year retention rate was of 90.6% and 76.9% with and without acid conditioning. Optibond All-in-One performs at a satisfactory clinical performance level for restoration of NCCLs after 12 months especially after acid etching.


2021 ◽  
Author(s):  
Dennis Larsen ◽  
Sophie R. Beeren

Template-induced kinetic trapping of specific cyclodextrins in enzyme-mediated dynamic combinatorial libraries of linear and cyclic α-glucans enables the one-step synthesis of cyclodextrins from maltose in water.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 77
Author(s):  
Elena O. Vidyagina ◽  
Nikolay N. Kharchenko ◽  
Konstantin A. Shestibratov

Axillary buds of in vitro microshoots were successfully frozen at –196 °C by the one-step freezing method using the protective vitrification solution 2 (PVS2). Microshoots were taken from 11 transgenic lines and three wild type lines. Influence of different explant pretreatments were analyzed from the point of their influence towards recovery after cryopreservation. It was found out that the use of axillary buds as explants after removal of the apical one increases recovery on average by 8%. The cultivation on growth medium of higher density insignificantly raises the regenerants survival rate. Pretreatment of the osmotic fluid (OF) shows the greatest influence on the survival rate. It leads to the increase in survival rate by 20%. The cryopreservation technology providing regenerants average survival rate of 83% was developed. It was based on the experimental results obtained with explant pretreatment. Incubation time in liquid nitrogen did not affect the explants survival rate after thawing. After six months cryostorage of samples their genetic variability was analyzed. Six variable simple sequence repeat (SSR) loci were used to analyze genotype variability after the freezing-thawing procedure. The microsatellite analysis showed the genetic status identity of plants after cryopreservation and of the original genotypes. The presence of the recombinant gene in the transgenic lines after cryostorage were confirmed so as the interclonal variation in the growth rate under greenhouse conditions. The developed technique is recommended for long-term storage of various breeding and genetically modified lines of aspen plants, as it provides a high percentage of explants survival with no changes in genotype.


2021 ◽  
Vol 20 (5) ◽  
Author(s):  
Paweł J. Szabłowski

AbstractWe analyze the mathematical structure of the classical Grover’s algorithm and put it within the framework of linear algebra over the complex numbers. We also generalize it in the sense, that we are seeking not the one ‘chosen’ element (sometimes called a ‘solution’) of the dataset, but a set of m such ‘chosen’ elements (out of $$n>m)$$ n > m ) . Besides, we do not assume that the so-called initial superposition is uniform. We assume also that we have at our disposal an oracle that ‘marks,’ by a suitable phase change $$\varphi $$ φ , all these ‘chosen’ elements. In the first part of the paper, we construct a unique unitary operator that selects all ‘chosen’ elements in one step. The constructed operator is uniquely defined by the numbers $$\varphi $$ φ and $$\alpha $$ α which is a certain function of the coefficients of the initial superposition. Moreover, it is in the form of a composition of two so-called reflections. The result is purely theoretical since the phase change required to reach this heavily depends on $$\alpha $$ α . In the second part, we construct unitary operators having a form of composition of two or more reflections (generalizing the constructed operator) given the set of orthogonal versors. We find properties of these operations, in particular, their compositions. Further, by considering a fixed, ‘convenient’ phase change $$\varphi ,$$ φ , and by sequentially applying the so-constructed operator, we find the number of steps to find these ‘chosen’ elements with great probability. We apply this knowledge to study the generalizations of Grover’s algorithm ($$m=1,\phi =\pi $$ m = 1 , ϕ = π ), which are of the form, the found previously, unitary operators.


2021 ◽  
pp. 153062
Author(s):  
Yue Zhang ◽  
Xinpeng Liu ◽  
Yanan Wang ◽  
Yinan Zhang ◽  
Junwei Wang ◽  
...  
Keyword(s):  
One Step ◽  

Sign in / Sign up

Export Citation Format

Share Document