Risk Assessment for Small Diameter Piping for Liquid Pipeline Facilities

Author(s):  
C. M. Refaul Ferdous ◽  
Amanda Kulhawy ◽  
Jessica Farrell ◽  
Chris Beaudin ◽  
Anthony Payoe ◽  
...  

The Enbridge Liquids Pipeline system is comprised of a large number of facilities including storage terminals, pump stations, injection sites, and delivery sites. Given the vast amount of small diameter piping (SDP) within company Pipeline facilities, SDP represents a significant portion of total facility integrity risk. An event such as equipment failure or product release can cause significant business impacts, and adverse consequences to the environment and/or safety of operations personnel. A quantitative risk based approach is required in order to establish robust, risk-based plans and programs to maintain the integrity of these SDP sections. Small diameter piping lengths are relatively short. Consequently, it is impractical to use SDP length as a unit of likelihood and risk measure. Instead, the preferred methodology is to determine the total number of assemblies for each type of SDP. In support of this approach, an inventory of SDP sections throughout the system has been gathered. For illustrative purposes, an example of a small diameter section would be a pressure transmitter branch connection. The isolatable section that would be risk assessed would start from the surface of the main station piping connection and continue up to the transmitter. This paper presents the framework for likelihood and consequence assessment of SDP based on the system description above. This framework quantitatively estimates the risk of SDP failure and risk-ranks SDP sections in support of implementing and establishing a system wide Risk Based Inspection and Maintenance program for SDP.

Author(s):  
Adam Pecush ◽  
Mark McTavish ◽  
Brian Ellestad

To serve the pumping and storage needs of its customers; Enbridge operates more than 25 terminals and 150 pump stations across North America. In each of these facilities, small diameter (NPS 6 and smaller) piping is used in auxiliary systems including instrumentation, measurement, and product re-injection. Traditionally, in the design of facilities, this small piping has received less attention than large diameter process lines and, during construction, has typically been field run based on standard installation details. This, in conjunction with 65 years of changing design and construction philosophies, as well as asset acquisitions, has resulted in a wide variety of installation configurations across the Enbridge liquids system. The Small Diameter Piping Program in the Facilities Integrity group centrally manages the integrity of all small diameter auxiliary piping across the Enbridge liquids system. Historically, the management and remediation of small diameter systems has been based on addressing specific installation types identified through incident investigations. While generally effective at minimizing re-occurrence, this approach has been limited in its ability to proactively identify installations that should be addressed. In support of our goal of zero incidents, Enbridge has developed a proactive methodology for the inspection and prioritization of small diameter auxiliary piping. Installation types are evaluated on their susceptibility to specific damage mechanisms. An inspection and prioritization model was developed through the combination of internal lessons learned and prioritization methodologies outlined in industry publications, specifically those from the overseas oil and gas industry. This model, sets a standardized process to assign a likelihood of failure (LOF) score to individual small diameter installations of specific types and/or functions. Presently, likelihood of failure scores are used to identify installations requiring remediation, and to most effectively prioritize system-wide remediation activities. Over time, these scores will also be used to demonstrate an overall reduction in the likelihood of failure for small diameter piping in the Enbridge liquids pipeline system.


Author(s):  
Peter Song ◽  
Doug Lawrence ◽  
Sean Keane ◽  
Scott Ironside ◽  
Aaron Sutton

Liquids pipelines undergo pressure cycling as part of normal operations. The source of these fluctuations can be complex, but can include line start-stop during normal pipeline operations, batch pigs by-passing pump stations, product injection or delivery, and unexpected line shut-down events. One of the factors that govern potential growth of flaws by pressure cycle induced fatigue is operational pressure cycles. The severity of these pressure cycles can affect both the need and timing for an integrity assessment. A Pressure Cycling Monitoring (PCM) program was initiated at Enbridge Pipelines Inc. (Enbridge) to monitor the Pressure Cycling Severity (PCS) change with time during line operations. The PCM program has many purposes, but primary focus is to ensure the continued validity of the integrity assessment interval and for early identification of notable changes in operations resulting in fatigue damage. In conducting the PCM program, an estimated fatigue life based on one month or one quarter period of operations is plotted on the PCM graph. The estimated fatigue life is obtained by conducting fatigue analysis using Paris Law equation, a flaw with dimensions proportional to the pipe wall thickness and the outer diameter, and the operating pressure data queried from Enbridge SCADA system. This standardized estimated fatigue life calculation is a measure of the PCS. Trends in PCS overtime can potentially indicate the crack threat susceptibility the integrity assessment interval should be updated. Two examples observed on pipeline segments within Enbridge pipeline system are provided that show the PCS change over time. Conclusions are drawn for the PCM program thereafter.


2006 ◽  
pp. 1069-1076 ◽  
Author(s):  
Brett Kennedy ◽  
Avi Okon ◽  
Hrand Aghazarian ◽  
Mike Garrett ◽  
Terry Huntsberger ◽  
...  

Author(s):  
Hossam F. Hassan ◽  
Thomas D. White ◽  
Rebecca McDaniel ◽  
David Andrewski

The applications of pavement subdrainage in the state of Indiana are presented. A recent study evaluated pavement subdrainage systems and measured and predicted moisture conditions underneath various types of pavements. Camera systems were used for internal inspection of the edge and geocomposite drains. Pavement instrumentation included moisture blocks, pressure transducers, temperature probes, rain and outflow tipping buckets, and a data acquisition system. Ongoing research using a test site on I-469 at Fort Wayne, Indiana, is aimed at finding the optimum location and layer configuration in flexible pavement; it uses those instruments as well as a TDR system, neutron probes, resistivity probe trees, and an enhanced data acquisition process. The research is a long-term project that will build on the data base of material hydraulic characteristics and performance. Indiana Department of Transportation has formed a committee to address issues related to use of subdrainage. Some of the recommendations from the committee were to abandon geocomposite drains, use bigger concrete protector walls at outlet pipes, and implement a routine inspection and maintenance program for drainage systems.


2017 ◽  
Vol 12 (1) ◽  
pp. 112 ◽  
Author(s):  
Leksono Mucharam ◽  
Silvya Rahmawati ◽  
Rizki Ramadhani

Oil and gas industry is one of the most capital-intensive industry in the world. Each step of oil and gas processing starting from exploration, exploitation, up to abandonment of the field, consumes large amount of capital. Optimization in each step of process is essential to reduce expenditure. In this paper, optimization of fluid flow in pipeline during oil transportation will be observed and studied in order to increase pipeline flow performance.This paper concentrates on chemical application into pipeline therefore the chemical can increase overall pipeline throughput or decrease energy requirement for oil transportation. These chemicals are called drag reducing agent, which consist of various chemicals such as surfactants, polymers, nanofluids, fibers, etc. During the application of chemical into pipeline flow system, these chemicals are already proven to decrease pump work for constant flow rate or allow pipeline to transport more oil for same amount of pump work. The first application of drag reducer in large scale oil transportation was in Trans Alaskan Pipeline System which cancel the need to build several pump stations because of the successful application. Since then, more company worldwide started to apply drag reducer to their pipeline system.Several tedious testings on laboratory should be done to examine the effect of drag reducer to crude oil that will be the subject of application. In this paper, one of the testing method is studied and experimented to select the most effective DRA from several proposed additives. For given pipeline system and crude oil type, the most optimum DRA is DRA A for pipeline section S-R and for section R-P is DRA B. Different type of oil and pipeline geometry will require different chemical drag reducer. 


1973 ◽  
Vol 1973 (1) ◽  
pp. 39-43 ◽  
Author(s):  
E. W. Wellbaum

ABSTRACT Oil spills only occur after the start-up of a facility but oil spill prevention for a pipeline-terminal-tanker complex begins with route selection and continues through design, construction, personnel training, operation and maintenance. The trans-Alaska pipeline project has faced all of the usual, and some unusual, problems which needed solutions to give maximum assurance that oil spills would not occur during the operating life of the facilities. This conference today is considering the prevention of oil spill incidents associated with tanker and pipeline operations, refineries, and transfer and storage terminals. The trans-Alaska pipeline system is concerned with each of these functions of the petroleum industry. Alyeska Pipeline Service Company is responsible for design, construction, operation, and maintenance of the pipeline system which will move crude oil produced on the Alaskan North Slope along a route to Valdez, an ice free port located on an arm of Prince William Sound. At Valdez, the oil will be transferred to ocean going tankers. The project will have at its ultimate design capacity of two million barrels per day:Almost 800 miles of 48-inch pipeline.Twelve pump stations with 650,000 installed HP.Twenty-million barrels of crude oil storage in fifty-two tanks.Five loading berths at a deep water terminal servicing a fleet of tankers ranging in size from 30,000 dwt to 250,000 dwt.Eight crude oil topping plants, manufacturing fuel for pump stations, each with a charge of 10,000 barrels per day.A ballast water treating plant capable of handling up to 800,000 barrels per day of dirty ballast.A 25,000 KW power generation plant.Several dozen mechanical refrigeration plants which will be freezing the ground in Alaska.


Sign in / Sign up

Export Citation Format

Share Document