Mechanical Properties of Matrix Filled Single-Walled Carbon Nanotube Reinforced Nanocomposites
It is frequently reported that carbon nanotubes can efficiently be used to reinforce composite materials and considerably improve their structural mechanical properties. Therefore, it is essential to investigate the effective properties of such nanocomposites. In this work, an analytical approach is employed to derive the analytical exact solutions for the effective Young’s modulus and major Poisson’s ratio of a three-phase composite cylinder model representing a matrix filled single-walled carbon nanotube (SWCNT) embedded in another host material. In this study, all three constituents are considered generally cylindrical orthotropic. For validation, results from finite element analysis of an identical 3-D model are compared to those obtained analytically. It is shown that both techniques are in excellent agreement and therefore analytical exact solutions for the prediction of effective axial Young’s modulus and major Poisson’s ratio of the filled SWCNT embedded in another host material and all having orthotropic properties are verified.