Study on the Friction and Wear Behavior of PEEK Composites Filled With Nanometer Compounds and PTFE

Author(s):  
Xu-Dong Peng ◽  
Ji-Yun Li ◽  
Qun-Feng Zeng

The friction and wear behavior of polyetheretherketone (PEEK) composites was investigated, which are reinforced with nanometer Al2O3 or nanometer TiO2 and blended with polytetrafluoroethylene (PTFE) in a fixed weight fraction of 10% and are prepared by heat compression moulding. The studies emphasized particularly on the nanometer Al2O3 filled PEEK composites. The tests were performed on a pin-on-disc test apparatus with a PEEK composite pin sliding against AISI 1020 carbon steel disc under dry friction conditions and were all carried out at room temperature. The worn surfaces of the PEEK composites were examined by scanning electron microscopy (SEM). Results indicated that the above PEEK composites exhibited lower friction coefficient and wear rate in comparison with the mixture of PEEK with PTFE. The SEM micrographs of the worn surfaces indicated that the scratched and ploughed marks appeared on the wear scar of PEEK filled with PTFE, while the scuffing on the worn surfaces of nanometer Al2O3/PTFE/PEEK was obviously abated. The optimal content of nanometer Al2O3 in the filled PEEK composite should be recommended as 6.5 wt %. The friction behavior of the nanometer TiO2/PTFE/PEEK composites was far better than that of the nanometer Al2O3/PTFE/PEEK composites under the same test conditions and with the same content of nanometer compounds, which was perhaps due to much more strong synergistic effect between nanometer TiO2 and PTFE than that between nanometer Al2O3 and PTFE.

2013 ◽  
Vol 380-384 ◽  
pp. 8-11
Author(s):  
Jian Hua Fang ◽  
Bo Shui Chen ◽  
Jiu Wang ◽  
Jiang Wu

A type of new environmentally friendly lube additive---boron-nitrogen modified soybean oil was synthesized and characterized by infrared spectrum. Its effect on the friction and wear behavior of steel-steel and steel-aluminum alloy systems were investigated with a four-ball machine and an Optimol SRV friction and wear tester respectively. The morphographies of the worn surfaces were analyzed by means of scanning electron microscopy (SEM).The worn surfaces of the 2024Al alloy block were analyzed by means of X-ray photoelectron spectroscopy (XPS).The results show that the type of modified soybean oil as additives can obviously decrease the wear rate and friction coefficient of steel pair and steel-aluminum frictional pair. Its lubrication mechanism is inferred that a high strength adsorption film and/or tribochemistry reaction film on the worn surface of the Al alloy due the carrier effect of a long chain soybean oil, high reaction activities of nitrogen, electron-deficient of boron and their synergisms.


2016 ◽  
Vol 879 ◽  
pp. 164-168
Author(s):  
Auezhan Amanov ◽  
Jun Hyong Kim ◽  
Young Sik Pyun

In this study, two different AISI 52100 bearing and D2 tool steels were subjected to ultrasonic nanocrystalline surface modification (UNSM) technique at ambient and high temperature of 500 °C. The objective of this study is to characterize the microstructure and to investigate the effectiveness of UNSM technique on the friction and wear behavior of those steels. The friction and wear behavior of the specimens against AISI52100 bearing steel ball with a diameter of 10 mm was carried out using a micro-tribo tester under dry conditions. The hardness with respect to depth from the top surface was measured using a microhardness. The change in the microstructure of the specimens before and after UNSM treatment was characterized by scanning electron microscopy (SEM). The findings from this preliminary study are expected to be implemented to the bearings and tools to increase the efficiency and performance of the components.


Author(s):  
R. Ribeiro ◽  
S. Ingole ◽  
O. Juan ◽  
H. Liang ◽  
M. Usta ◽  
...  

Enhanced corrosion and wear resistance are crucially important to prolong the service life of biomaterials. Boronizing has been reported to enhance the wear resistance of pure chromium. In this research, we investigate friction and wear behavior of boronized chromium. Pin-on-disc tribometer was used to conduct the wear and friction tests. Experiments were conducted in dry conditions as well as in simulated body fluid (SBF). Fundamental aspects of wear mode and lubrication behavior were studied using surface characterization techniques such as TEM, and X-ray diffraction. Results showed evidence of tribo-chemical interactions between SBF and work piece materials.


2000 ◽  
Vol 643 ◽  
Author(s):  
Alan Duckham ◽  
Dan Shechtman ◽  
Benjamin Grushko

AbstractThe influence of grain orientation on the friction and wear behavior of single-phase quasicrystalline alloys is investigated. Pin-on-disc wear tests and friction coefficient measurements have been performed on bulk samples of icosahedral phase AlPdMn and decagonal phase AlNiCo alloys. Wear behavior has been evaluated by optical microscopy, scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD). Coefficient of friction values of the decagonal AlNiCo alloy are found to be widely scattered (between 0.03 and 0.55) compared to the far more consistent values of the icosahedral alloys. This is explained by considering the significant variation in wear behavior that is observed between different – sometimes adjacent – oriented grains in the decagonal specimens.


Author(s):  
Pujan Sarkar ◽  
Nipu Modak ◽  
Prasanta Sahoo

An experimental study has been carried out to investigate the reciprocating friction and wear characteristics of woven glass epoxy composites filled with Al particulate using a reciprocating friction and wear tester. The fiber weight fraction has been kept constant at 60 wt% and Al wt% is varied as 0, 5, 10, and 15%. The composite is fabricated in hand lay-up technique followed by light compression moulding. Friction and wear behavior under dry reciprocating condition has been presented as function of reciprocating distance keeping reciprocating frequency and normal load constant at 30 Hz and 1.0 Kg respectively. Composites having 5 and 10 wt% Al powder exhibit less friction and wear loss as compared to unfilled glass epoxy composite whereas 15 wt% Al filled glass epoxy composite reports highest friction and wear loss. An attempt has been made to observe the distribution of fiber and Al particles in the composite, and to correlate the wear behavior using Scanning Electron Microscopy (SEM) observations.


2021 ◽  
Vol 6 (6) ◽  
pp. 1288-1296
Author(s):  
Hongming Wie ◽  
Jianpeng Zou ◽  
Xiaoya Li ◽  
Cong Xiao

Sign in / Sign up

Export Citation Format

Share Document