Purpose
The purpose of this paper is to reveal the friction and wear performance of grooves textured cylindrical roller thrust bearings with different groove dimensions under starved lubrication.
Design/methodology/approach
The groove dimensions include: width of grooves (WOG, 50 µm, 100 µm and 150 µm), depth of grooves (DPOG, 7 µm, 11 µm and 15 µm) as well as groove deflection angle (GDA, 45°). A fiber laser marking system was used to prepare groove patterns on the raceways of shaft washers. The friction and wear properties of grooves textured bearings were researched through a vertical universal wear test rig using a customized roller bearing tribo-pair under starved lubrication. Static finite element analyses were conducted to reveal their surface stresses. Through the comprehensive comparison and analyses, the influence mechanism of grooves on the tribological behavior of cylindrical roller thrust bearings was proposed and discussed.
Findings
When grooves textured bearings run under starved lubrication, their average coefficients of friction (COFs) and wear losses are all significantly reduced and much lower than those of smooth group. The influence of DPOG on the COF curves is significant, while the influence of WOG on the COF curves is a little weak. The influence of groove dimensions on the surface stresses of grooves textured bearings is weak, whether the WOG or DPOG. In this work, when the WOG is 100 µm and the DPOG is 15 µm, its average COF and wear loss are both the lowest, 0.0066 and 0.61 mg, respectively. Compared with the data of smooth group, its friction coefficient is reduced by 75.3% and its mass loss is reduced by 95.8%, showing a significant improvement in this condition.
Originality/value
This work can provide a valuable reference for the raceway design and reliability optimization of rolling element bearings.