Prediction of Welding Deformation and Residual Stress in a Multiply-Stiffened Plate

Author(s):  
Min Guo ◽  
Zhen Chen ◽  
Yu Luo

In this paper, welding induced deformation and residual stress of a multiply-stiffened plate is studied by means of sequentially coupled thermal elasto-plastic finite element method. For the purpose of enhancing calculation efficiency, the FE model combining shell and solid elements is employed in the analysis. A transient moving heat source is used in the numerical analysis to consider important welding parameters such as heat input, welding speed and welding sequences. The welding processes of three stiffeners being attached to a base plate by single-side welds are simulated according to assembly configurations. The influence of three welding sequences and the position of weld foot on distortions and residual stress are discussed. The results demonstrate the different characteristics of residual distortion and stress in the multiply-stiffened plate by different welding sequences. The position of weld foot affects the local distortion of panel between two adjacent stiffeners.

Author(s):  
P. Hurrell ◽  
C. Watson ◽  
J. Bouchard ◽  
M. Smith ◽  
R. Dennis ◽  
...  

This paper describes the development of finite element modelling guidelines for the calculation of welding residual stresses. These guidelines form a new section in the R6 procedure, used in the UK nuclear power industry for the assessment of integrity structures containing defects. The intention is to improve the consistency of weld modelling procedures, the accuracy of predicted residual stress profiles and confidence in their use for defect tolerance assessments. The first issue of these guidelines is applicable to austenitic stainless steel joints produced using arc welding processes. The components of interest are mainly thick section nuclear pressure vessels and pipe welds where distortion is not the key issue. Recommendations made in the guidelines are largely based on residual stress analysis methods, validated by measurements on a range of weld mock-ups, developed over several years in support of British Energy projects. Advice is included on the use of 2D and 3D models, welding heat sources, material properties requirements, cyclic hardening and annealing assumptions. The modelling and computational requirements depend on the level of accuracy and degree of validation required. This is likely to be a function of the defect tolerance in the structure. In future issues, the R6 modelling guidelines will be supported by weld validation benchmarks. This will provide a detailed manufacturing record and measurement data from controlled weld mock-ups (including specimen design, welding parameters, thermo-mechanical properties, thermocouple data and stress measurements). It is also planned to develop these guidelines to include ferritic steel and dissimilar metal welds. The metallurgical behaviour in ferritic steel welds is more complex, since micro-structural phase transformations occur. Guidance will be provided on modelling post-weld heat treatment (PWHT) applied to pressure vessel welds and stress relaxation by creep. In modelling dissimilar metal welds, it is necessary to provide advice on dealing with the structural discontinuity at material interfaces and overcome FE solution convergence problems.


Author(s):  
H. Dai ◽  
R. Moat ◽  
A. F. Mark ◽  
P. J. Withers

The aim of this paper is to investigate the implications for weld residual stresses of martensitic transformation induced plasticity (TRIP) in stainless steel filler metal. The TRIP strains occurring during cooling under different uniaxial load levels have been obtained using digital image correlation (DIC) for a residual stress relieving low transformation temperature weld filler known to show little variant selection on cooling as a function of stress. In order to investigate the efficacy of current FE transformation plasticity models of different levels of sophistication in simulating TRIP strains, a finite element model, incorporating the so-called Greenwood-Johnson effect was used to simulate these constrained dilatometry measurements. To assess the implications of the different approaches to modelling TRIP for weld residual stresses, the TRIP coefficients determined from the above experiments were incorporated into an FE model simulating the residual stresses that are generated when a single weld bead is deposited on to a stainless steel base plate. It was found that including TRIP had a significant influence on the weld stresses, while the differences between the models were much smaller.


2020 ◽  
Vol 3 (2) ◽  
pp. 40-45
Author(s):  
Ali Aminifar ◽  
Alireza M. Haghighi

Welding is a process of permanent joining parts by different welding methods. Residual stress and distortion are the most common phenomena of this process. Reduction of the residual stresses, distortion and improving the quality of welding are the important subjects of this field. Determining and analyzing the residual stresses and distortion is the main step for these purposes. Welding sequences, speed and current are the most effective parameters of this process. In this study, effects of welding parameters such as welding speed and current, in order to reduce residual stress and distortion of welding ST52 rolled plate in different welding sequences have been studied with three-dimensional thermo-mechanical finite element model by means of ANSYS APDL. By comparing different considered situations, the most efficient welding methods with the least residual stress and distortion by considering different welding sequences have been suggested. It obtains that welding the ST52 rolled plate from edge to edge with higher current and lower speed is the best option in fatigue and load-bearing situations, and welding from the center to both sides simultaneously with lower current and higher speed is the best option for assembly problems.


2008 ◽  
Vol 571-572 ◽  
pp. 375-380 ◽  
Author(s):  
Winulf Machold ◽  
Peter Staron ◽  
Funda S. Bayraktar ◽  
Stefan Riekehr ◽  
Mustafa Koçak ◽  
...  

The effect of different welding sequences between a 4.5 mm thick AA 6156 T6 base plate and a 2 mm thick AA 6013 T6 clip – resembling a skin-clip joint of an airframe – using a 3.3 kW Nd:YAG laser is investigated. Under cyclic loading the breakdown of such T-joints happens at one end of the clip, which is due to local residual stress concentrations. Recent measurements indicated that tensile stresses could be lower at the run-in than at the run-out locations. For a deeper investigation of this effect sheets with different welding sequences were produced. One welding sequence was made with two starting points in the centre, and a second with starting points at the clip ends. Temperature measurements were made using thermocouples to verify the heat conditions for a finite element simulation of the welding process, which is used for predictions of the residual stress distribution. Actual values of the residual stress fields were determined by neutron diffraction. The influences of the welding sequence on the measured temperatures and the residual stresses are discussed.


Author(s):  
Yu-Ping Yang ◽  
Wei Zhang ◽  
Wei Gan ◽  
Shuchi Khurana ◽  
Junde Xu ◽  
...  

Weld residual stress and distortion are inevitable during welding due to rapid local heating and cooling, high-temperature material reactions and weld-fixture effects. To predict weld residual stress and distortion, an engineer has to understand welding processes and the finite element analysis method. It is difficult for an engineer without finite element background to calculate the weld residual stress and distortion. With the development of weld modeling technology, automatic meshing generation, and high performance computation, a web-based analysis tool (E-Weld Predictor), was developed to predict weld residual stress and distortion. This allows an engineer to calculate the weld residual stress and distortion on line. The engineer does not need to have finite element analysis knowledge to perform the calculation. By providing welding parameters, defining a weld joint, giving geometry dimensions, and specifying a material, weld residual stress and distortion are automatically calculated in a remote high performance computer. A report will then be sent to the engineer to review. This paper introduces the development of E-Weld Predictor. The software structure, the theory, the implementation, and the validation of E-Weld Predictor are discussed in detail. It also shows the simulation process of applying this software in predicting temperature, microstructure, residual stress and distortion.


Author(s):  
Ashwini Gautam ◽  
Chris Fuller ◽  
James Carneal

This work presents an extensive analysis of the properties of distributed vibration absorbers (DVAs) and their effectiveness in controlling the sound radiation from the base structure. The DVA acts as a distributed mass absorber consisting of a thin metal sheet covering a layer of acoustic foam (porous media) that behaves like a distributed spring-mass-damper system. To assess the effectiveness of these DVAs in controlling the vibration of the base structures (plate) a detailed finite elements model has been developed for the DVA and base plate structure. The foam was modeled as a poroelastic media using 8 node hexahedral elements. The structural (plate) domain was modeled using 16 degree of freedom plate elements. Each of the finite element models have been validated by comparing the numerical results with the available analytical and experimental results. These component models were combined to model the DVA. Preliminary experiments conducted on the DVAs have shown an excellent agreement between the results obtained from the numerical model of the DVA and from the experiments. The component models and the DVA model were then combined into a larger FE model comprised of a base plate with the DVA treatment on its surface. The results from the simulation of this numerical model have shown that there has been a significant reduction in the vibration levels of the base plate due to DVA treatment on it. It has been shown from this work that the inclusion of the DVAs on the base plate reduces their vibration response and therefore the radiated noise. Moreover, the detailed development of the finite element model for the foam has provided us with the capability to analyze the physics behind the behavior of the distributed vibration absorbers (DVAs) and to develop more optimized designs for the same.


Author(s):  
Junshuai Liang ◽  
Ning Li ◽  
Jingyu Zhai ◽  
BaoGang Wen ◽  
Qingkai Han ◽  
...  

In this study, a layering method of carburized ring is presented. A finite element (FE) model for analyzing bearing stiffness characteristics is established considering the residual stress in the carburized layer. The residual stress in the carburized layer of a double-row conical roller bearing is tested and the influence of the distribution of residual stress in carburized layer on the bearing stiffness is investigated. Results show that the residual stress in the carburized layer increases the contact stiffness of the bearing by 5% in the low-load zone and 3% in the high-load zone. The radial stiffness of the bearing is increased by 5% in the low-load zone and 3% in the high-load zone. The axial stiffness is increased by 6%, and the angular stiffness increased by 4%. The larger the thickness of the carburized layer, the greater the residual compressive stress in the carburized layer, the deeper the position of the maximum residual stresses in the carburized layer will lead to the greater stiffness of the bearing.


2020 ◽  
Vol 64 (7) ◽  
pp. 1195-1212
Author(s):  
B. Lennart Josefson ◽  
R. Bisschop ◽  
M. Messaadi ◽  
J. Hantusch

Abstract The aluminothermic welding (ATW) process is the most commonly used welding process for welding rails (track) in the field. The large amount of weld metal added in the ATW process may result in a wide uneven surface zone on the rail head, which may, in rare cases, lead to irregularities in wear and plastic deformation due to high dynamic wheel-rail forces as wheels pass. The present paper studies the introduction of additional forging to the ATW process, intended to reduce the width of the zone affected by the heat input, while not creating a more detrimental residual stress field. Simulations using a novel thermo-mechanical FE model of the ATW process show that addition of a forging pressure leads to a somewhat smaller width of the zone affected by heat. This is also found in a metallurgical examination, showing that this zone (weld metal and heat-affected zone) is fully pearlitic. Only marginal differences are found in the residual stress field when additional forging is applied. In both cases, large tensile residual stresses are found in the rail web at the weld. Additional forging may increase the risk of hot cracking due to an increase in plastic strains within the welded area.


Author(s):  
Abul Fazal M. Arif ◽  
Ahmad S. Al-Omari ◽  
Anwar K. Sheikh ◽  
Yagoub Al-Nassar ◽  
M. Anis

Double submerged spiral-welded pipe (SWP) is used extensively throughout the world for large-diameter pipelines. Fabrication-induced residual stresses in spiral welded pipe have received increasing attention in gas, oil and petrochemical industry. Several studies reported in the literature verify the critical role of residual stresses in the failure of these pipes. Therefore, it is important that such stresses are accounted for in safety assessment procedures such as the British R6 and BS7910. This can be done only when detailed information on the residual stress distribution in the component is known. In industry, residual stresses in spiral welded pipe are measured experimentally by means of destructive techniques known as Ring Splitting Test. In this study, statistical analysis and linear-regression modeling were used to study the effect of several structural, material and welding parameters on ring splitting test opening for spiral welded pipes. The experimental results were employed to develop an appropriate regression equation, and to predict the residual stress on the spiral welded pipes. It was found that the developed regression equation explains 36.48% of the variability in the ring opening. In the second part, a 3-D finite element model is presented to perform coupled-field analysis of the welding of spiral pipe. Using this model, temperature as well as stress fields in the region of the weld edges is predicted.


Sign in / Sign up

Export Citation Format

Share Document